Momentum Worksheet #1	ran en en en el el en
	(name)
1. What is the momentum of a golf ball that velocity of 70 $^{\rm m}/_{\rm s}?$	t has a mass of 60 g and is moving with a
	p =
2. If, in problem #1, the impact between the what force did the club apply?	ne club and the ball lasted 2.0x10 ⁻⁴ s,
3. A girl holds a 2.0 kg rifle loosely and fire velocity of the bullet is 150 $^m/_s$. What is th	
	v=
4. If the girl in problem #3 holds the gun t velocity is less. Calculate the new recoil vel	ocity if the girl's mass is 48 kg.
	V new =
5. In a freight yard a train is being made up strikes a stationary loaded car and they co mass of 3000 kg when empty, and the loade With what speed do the coupled cars move	uple together. Each of the cars has a ed car contains 12,000 kg of bottled pop

6. A space man of mass 80 kg carries an empty oxyg throws the tank away from himself with a speed of does the spaceman start to move through space?	gen tank of mass 10 kg. He 2.0 ^m / _s . With what velocity
	v =
7. What force, acting for 0.0010 s, will change the v from 30 $^{\rm m}/_{\rm s}$ EAST to 40 $^{\rm m}/_{\rm s}$ WEST?	velocity of a 100 g baseball
	F=
8. A ball of mass 3.0 kg, moving at 2.0 $^m/_s$ east, strike kg that is moving at 2.0 $^m/_s$ west. The balls stick toge is the velocity of the combined mass after the impact	ether after the impact. What
9. A life raft of mass 180 kg carries two swimmers of respectively. The raft is initially at rest; then the swin off opposite ends of the raft each with a horizontal velocity does the raft move?	mmers simultaneously dive
	v = 40.0030 ^m / _s 5. 1.7 ^m / _s ward 50 kg swimmer

Momentum Worksheet#2	(name)
1. A body of mass 5.0 kg travelling at a spee speed reduced to $5.0\mathrm{m/s}$ in the same direction the average decelerating force acting on the	on in a time interval of 2.5 s. What is
	F _{av} =
2. An airplane of mass 52,000 kg accelerate off at a speed of 72 $^m/_s$ after a run lasting the engines and how far does the plane training	56 s. What is the thrust exerted by
	F =
	d =
3. A tennis ball of mass 55 g strikes a rack collision it travels at a speed of 8.0 $^{\rm m}/_{\rm s}$ in lasts for approximately 0.12 s, what is the the ball?	the opposite direction. If the collision
	F _{av} =
4. A rifle bullet of mass 64 g leaves the n rifle itself has a mass of 7.5 kg, what is t	

5. A boxcar weighing 64 tonnes travelling at a speed of 4.0 $^m/_s$ collides with a stationary flatcar weighing 48 tonnes. If the couplings engage, what is the final speed of both cars? (Note: 1 tonne = 1000 kg)

V_F = ______

6. A steel ball of mass 220 g moving at a speed of $15^{cm}/_s$ south on a level table collides inelastically with a second ball of mass 550 g, travelling at a speed of $8.0^{cm}/_s$ east. If the two balls stick together, what is the common final velocity of the two balls?

V_F = .

7. A truck weighing 7,500 kg travelling with a speed of 15 $^{\rm km}/_{\rm h}$ south on an icy road collides with a minicar weighing 600 kg travelling at 108 $^{\rm km}/_{\rm h}$ east. What is the common final velocity of the wreckage?

Answers: 1. -16N 2. 6.7x10⁴N, 2.0x10³m 3. -6.9N 4.-4.7 m /_s 5. 2.3 m /_s 6. 0.071 m /_s, 37° S of E 7. 16 km /_h 60° S of E

Momentum Worksheet #3	
	(name)
1. A 50 kg cart is moving across a frictionles riding on the cart, jumps off the back of the zero velocity.	ss floor at 2.0 ^m / _s . A 70 kg person e cart so that he lands on the floor at
(a) What impulse did the person give to the	cart?
	es class one the ball harmon to bid to .
,	
	Δp =
(b) What is the velocity of the cart immed	iately after the person jumped off?
	v _c =
2. A stationary billiard ball is struck by a snorth at a speed v ₀ . The target ball moves incident ball moves off at 60° east of north the collision in terms of v ₀ .	off at 30° west of north and the

Answers:

1. (a)+140 Ns (b) $4.8 \, \mathrm{m/s}$ in original direction

 $2.\ 0.50v_0$ and $0.866v_0$

v₂ = _____

Momentum Worksheet #4

(name)

1. An explosion blows a rock into three parts. Two pieces go off at right angles to each other, a 1.0 kg piece at 12 $^{\rm m}/_{\rm s}$ and a 2.0 kg piece at 8.0 $^{\rm m}/_{\rm s}$. The third piece flies off at 40 $^{\rm m}/_{\rm s}$. What was the mass of the rock before the explosion?

m₃ = ______

2. Two tennis players, one of mass 82 kg and at a velocity of 4.1 $^m/_{\text{s}}$ north, the other of mass 76 kg and at a velocity of 3.4 $^m/_{\text{s}}$ east collide running for a ball. They lock together. What is their velocity while entangled?

v_t = ______.

3. In an attempt to put a satellite into orbit, the rocket moving vertically upward at $480 \, \text{m/s}$ explodes into two pieces. One piece continues upward at an angle of 45° with the vertical at a speed of $350 \, \text{m/s}$. What is the velocity of the second piece if its mass is $0.60 \, \text{that}$ of the first piece?

V2 =

Answers: 1, 3.5kg

2. 2.7 m/s, 38° E of N

 $3.9.6 \times 10^2 \, \text{m/s}, 25^\circ \, \text{off vertical}$