## Vector Dynamics\#1

(name)

1. A box, mass 4.0 kg , is pushed along the rough horizontal floor by an applied force of 20.0 N . The coefficient of friction between the floor and the bottom of the box is 0.20 .
a) Find the normal reaction force exerted by the floor on the box.
$\qquad$
$F_{N}=$
b) Calculate the frictional force acting on the box.
$\qquad$
c) Calculate the net horizontal force acting on the box.

$$
F_{\text {net }}=
$$

d) Calculate the horizontal acceleration of the box.

$$
a_{x}=
$$

e) Calculate the time for the box to move 6.0 m from rest.

$$
t=
$$

2. A box, mass 8.44 kg is pulled along a rough horizontal floor by an applied force of 16.5 N acting upwards at 36.7 degrees above the horizontal. The coefficient of friction between the floor and the bottom of the box is 0.149 .
a) Calculate the horizontal and vertical components of the applied force.
$\qquad$
vertical =
b) Find the normal force exerted by the floor on the box.

$$
F_{N}=
$$

c) Calculate the frictional force acting on the box.

$$
F_{f}=
$$

d) Calculate the net horizontal force acting on the box.

$$
F_{\text {Net }}=\ldots
$$

e) Calculate the horizontal acceleration of the box.

$$
a_{x}=\square .
$$

Answers: 1 a) $39 \mathrm{~N} \quad$ b) $7.8 \mathrm{~N} \quad$ c) $12 \mathrm{~N} \quad$ d) $3.0 \mathrm{~m} / \mathrm{s}^{2} \quad$ e) $2.0 \mathrm{~s} \quad$ 2. a) 13.2 N ,
d) 2.36 N
e) $0.280 \mathrm{~m} / \mathrm{s}^{2}$

## Vector Dynamics\#3

(name)

1. A box, weight 420 N , rests on a rough horizontal floor. A force of 140 N is applied to the box. The box just begins to move horizontally when the angle $\theta$ is $58^{\circ}$ above the horizontal. Determine the coefficient of friction between the floor and the bottom of the box. Assume $a=0$

$\mu=$ $\qquad$
2. A 75 kg track star, at the start of a sprint, pushes on the ground with a measured force of $2 \cdot 0.10^{3} \mathrm{~N}$ at an angle of $60 .^{\circ}$ as shown. What forward acceleration was produced?


$$
F=
$$

3. What is the acceleration of the system if the coefficient of friction is 0.15 ?

$\qquad$
Answers: 1. $0.25 \quad$ 2. $13 \mathrm{~m} / \mathrm{s}^{2} \quad 3.1 .4 \mathrm{~m} / \mathrm{s}^{2}$

## Vector Dynamics Worksheet \#5

> (name)

1. An elevator, mass 4250 kg , is to be designed so that the maximum acceleration is $0.0500 \times \mathrm{g}$. What are the maximum and minimum forces the motor should exert on the supporting cable? $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$

$$
\begin{aligned}
& F_{\text {max }}= \\
& F_{\text {min }}=
\end{aligned}
$$

2. A flatbed truck is carrying a 2800 kg crate of machinery. If the coefficient of friction between the crate and the truck bed is 0.55 , what is the maximum rate the driver can decelerate when coming to a stop in order to avoid crushing the cab with the crate?

$$
a=
$$

$\qquad$
3. If the coefficient of friction between a 25 kg crate and the floor is 0.45 , how much force is required to move the crate at a steady speed across the floor?

$$
F=
$$

$\qquad$
4. A force of 270 N is required to start a 40 . kg box moving across a concrete floor. What is the coefficient of friction between the box and the floor?
$\qquad$
5. What mass must the crate have to prevent any motion from occurring if the coefficient of friction is 0.20 ?

$m=$ $\qquad$
6. Assuming that the pulley in the diagram is massless and frictionless, calculate the acceleration of the 3.2 kg mass and the tension in the cord supporting this mass.

$\qquad$
$a=$

Answers: 1. 43,800 N up/39,600 N down
2. $5.4 \mathrm{~m} / \mathrm{s}^{2}$
3. 110 N
4. 0.69
5. 10. kg
6. $5.1 \mathrm{~m} / \mathrm{s}^{2}, 15 \mathrm{~N}$

