Magnetism Review

An electric current flows through a solenoid as shown below.

What is the direction of the magnetic field inside the solenoid?
A. $\xrightarrow[\mathrm{B}]{\vec{~}}$
B.

C.

2. A long conductor is placed in a 0.65 T magnetic field as shown below.

What are the magnitude and direction of the current that produces a 1.6 N force on the wire directed up the page?
3. A proton has a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$ while travelling perpendicular to a 0.14 T magnetic field. What is the magnetic force on the proton?
4. The flux through a circular coil with a radius of 0.075 m is 0.013 Wb when placed perpendicular to a magnetic field. What is the strength of the magnetic field?
5. The diagram below shows an aluminum ring and the current induced in it by the nearby magnet that is free to move along its central axis.

The magnet must be
A. stationary.
B. moving to the left.
C. moving to the right.
D. spinning about its central axis.
6. A loop of wire of area $0.32 \mathrm{~m}^{2}$ is placed in a 0.75 T magnetic field as shown. The magnetic field is changed to 0.35 T in the opposite direction in 0.45 s .

What are the magnitude and direction of the current length through the 15Ω resistor?

	MAGNITUDE OF CURRENT	DIRECTION OF CURRENT
A.	0.019 A	X to Y
B.	0.019 A	Y to X
C.	0.052 A	X to Y
D.	0.052 A	Y to X

Which of the following diagrams best shows the magnetic field lines between the poles of two permanent magnets?
A.

B.

C.

D.

8. A wire carrying 12 A of current is placed in a magnetic field of strength 0.63 T.

What are the magnitude and direction of the magnetic force acting on the wire?
9. A 460 -turn solenoid having a diameter of 0.024 m is 0.14 m long. What is the magnetic field at the center of the solenoid when a 13 A current flows through it?
A. $0 T$
B. $5.4 \times 10^{-2} \mathrm{~T}$
C. $3.1 \times 10^{-1} \mathrm{~T}$
D. $6.3 \times 10^{-1} \mathrm{~T}$
10. A conducting rod is moving perpendicular to a uniform magnetic field of 0.23T at a velocity of $9.2 \mathrm{~m} / \mathrm{s}$. What emf is generated during this motion?

11. A rectangular coil measuring 0.12 m by 0.080 m is placed is placed perpendicular to a 0.85 T magnetic field as shown.

What is the magnetic flux through the coil?
12. A single loop of wire of radius 0.23 m is placed in a 0.75 T magnetic field as shown. The magnetic field is changed to a strength of 0.50 T in the opposite direction in 0.61 s .

Before

After

What is the average emf induced in the coil?
13. With the electromagnet turned off, electrons in a cathode ray tube strike the center of the screen as shown.

When the electromagnet is turned on, where will the electron beam now strike the screen?
A. 1
B. 2
C. 3
D. 4
14. Which of the following diagrams best shows the magnetic field due to a long straight wire carrying a conventional current / as shown?
A.

B.

C.

D.

15. A proton is travelling at $2.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in a circular path in a 0.75 T magnetic field. What is the magnitude of the force on the proton?
16. A solenoid of length 0.75 m has a radius 0.092 m . A current of 25 A flows through its 4700 turns. Within this solenoid a 0.10 m long conductor moves at $4.3 \mathrm{~m} / \mathrm{s}$ perpendicular to the field in the solenoid.

What emf is induced between the ends of the conductor?
17. A rectangular coil of wire containing 250 loops is placed in a magnetic field. Each loop measures 0.075 m by 0.28 m . The magnetic field changes over a time interval of 0.36 s producing an average emf of 1.3 V . What is the change in the magnetic field strength?
18. Which diagram shows the magnetic field created near a conductor carrying current towards the right?
A.

B.

C.

D.

19. In which of the following situations would the greatest emf be induced in the coil? All changes occur in the same time interval.
A.

$\stackrel{\rightharpoonup}{B}$
B.
$\times \times \times \times \times \times \times \times$
$\stackrel{\rightharpoonup}{\mathrm{B}}$
coil changes shape
C.

D. $\times \times \times \times \times \times \times \overrightarrow{\text { B }}$

20. The direction of a magnetic field is determined to be the direction in which
A. a positive charge would tend to move.
B. a negative charge would tend to move.
C. the north end of a compass needle would point.
D. the south end of a compass needle would point.
21. A solenoid has a length of 0.30 m , a diameter of 0.040 m and 500 windings. The magnetic field at its center is 0.045 T . What is the current in the windings?
22. An aircraft with a wingspan of 24 m flies at $85 \mathrm{~m} / \mathrm{s}$ perpendicular to a magnetic field. An emf of 0.19 V is induced across the wings of the aircraft. What is the magnitude of the magnetic field?
23. A beam of positively and negatively charged particles enters a magnetic field as shown. Which paths illustrate the positive and negative charges leaving the magnetic field region?

	PATH OF POSITIVE CHARGES	PATH OF NEGATIVE CHARGES
A.	I	I
B.	I	II
C.	II	I
D.	II	II

24. The diagram shows a bar magnet falling through an aluminum pipe. Electric currents are induced in the pipe immediately above and below the falling magnet. In which direction do these currents flow?

A.

ABOVE THE MAGNET	BELOW THE MAGNET
1	3
1	4
2	3
2	4

25. The diagram shows a conductor between a pair of magnets. The current in the conductor flows out of the page.

In what direction will the magnetic force act on the conductor?
26. What are the units of magnetic flux?
A. T
B. Wb
C. $T \bullet m / A$
D. $D \cdot m / C^{2}$
27. The diagram shows a coil with 25 windings and dimensions 0.15 m by 0.20 m . Its plane is perpendicular to a magnetic field of magnitude 0.60 T .

If the coil rotates 90° in $4.17 \times 10^{-2} \mathrm{~s}$ so that its plane is now parallel to the magnetic field, what average emf is induced during this time?
28. The diagram shows a magnet suspended near a solenoid. After the solenoid has been connected to a power supply, the magnet rotates to a new position with its South Pole pointing towards the solenoid.

What arrows show the direction of the current in the solenoid and the direction of the magnetic field caused by this current?

	DIRECTION OF CURRENT	DIRECTION OF MAGNETIC FIELD
A.	1	3
B.	1	4
C.	2	3
D.	2	4

29. A charged particle travels in a circular path in a magnetic field. What changes to the magnetic field and to the velocity of the particle would both cause the radius of its path to decrease?

	CHANGE TO THE MAGNETIC FIELD	CHANGE TO THE VELOCITY
A.	increase	increase
B.	increase	decrease
C.	decrease	increase
D.	decrease	decrease

30. The diagram below shows two coils in a magnetic field.

Coils perpendicular to magnetic field

Coils parallel to magnetic field

An electric current can be induced in the coil oriented with its plane.
A. Parallel to a constant magnetic field
B. Parallel to a changing magnetic field
C. Perpendicular to a constant magnetic field
D. Perpendicular to a changing magnetic field
31. The diagram shows a 0.010 kg metal rod resting on two long horizontal frictionless rails which remain 0.40 m apart. The circuit has a resistance of 3.0Ω and is located in a uniform 0.20 T magnetic field.

Find the initial acceleration and maximum velocity for the rod.
32. A proton with kinetic energy of $2.1 \times 10^{-17} \mathrm{~J}$ is moving into a region of charged parallel plates. The proton will be stopped momentarily in what region?

33. Identify the magnetic poles labelled L and R in the diagram shown.

34. The diagram shows current / flowing in a circular coil located in a magnetic field.

The magnetic force acting on the coil will tend to cause it to
A. Expand
B. Contract
C. Move up the page
D. Move down the page
35. An aircraft whose wingspan is 15 m carries a static charge of 0.60 C . It travels at $240 \mathrm{~m} / \mathrm{s}$ perpendicular to a $1.4 \times 10^{-4} \mathrm{~T}$ magnetic field. What magnetic force does the aircraft experience?
36. An undeflected electron beam strikes the centre of a cathode ray tube. A solenoid placed besides a cathode ray tube causes the electron beam to strike the screen at position X .

What changes to the magnitude and direction of the current in the solenoid would cause the electron beam to strike the screen at Y ?

	CHANGE TO CURRENT MAGNITUDE	CHANGE TO CURRENT DIRECTION
A.	Increases	Remains the same
B.	Increases	Reverses
C.	Decreases	Remains the same
D.	Decreases	Reverses

37. A coil having 150 turns and a cross-sectional area of $0.042 \mathrm{~m}^{2}$ is oriented with its plane perpendicular to a 0.12 T magnetic field. If the field increases to 0.66 T in 0.25 s , what emf is induced in the coil?

The magnetic field at the centre of a solenoid of length 0.25 m is $1.2 \times 10^{-2} \mathrm{~T}$. The current in the windings is 7.5 A . How many windings does the solenoid have?
A. If the cross-sectional area of the solenoid is $8.5 \times 10^{-4} \mathrm{~m}^{2}$, what is the flux through it?
39. In an experiment, a positively charged oil droplet weighing $6.5 \times 10^{-15} \mathrm{~N}$ is held stationary by a vertical electric field as show in the diagram.

If the electric field strength is $5.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$, what is the charge on the oil droplet?
40. Which of the following diagrams best represents the magnetic field in the region between the two permanent magnets?
A.

B.

C.

D.

41. In which diagram would the current-carrying conductor experience a magnetic force out of the page?
A.

B.
$\stackrel{\rightharpoonup}{B}$

C.

D.
$\stackrel{\rightharpoonup}{B}$

42. A coil of 25 turns of wire is suspended by a thread. When a current flows through the coil, the tension in the thread is reduced by $4.0 \times 10^{-2} \mathrm{~N}$.

What are the magnitude and direction of the current?
43. A bar magnet is moving toward a solenoid.

What is the direction of the current through the galvanometer and what is the direction of the magnetic field produced by this current at location P inside the solenoid?

	DIRECTION OF THE CURRENT THROUGH THE GALVANOMETER	DIRECTION OF THE MAGNETIC
FIELD AT P		

44. The 5.2 m long metal rotor blades of a helicopter spin at 6.0 revolutions per second perpendicular to the earth's magnetic field of $4.7 \times 10^{-5} \mathrm{~T}$.

What is the magnetic flux swept out by the rotor blades in one revolution and what is the emf induced between the axis and tip of a rotor blade?
A.

MAGNETIC FLUX	EMF IndUCED
$4.0 \times 10^{-3} \mathrm{~Wb}$	$2.4 \times 10^{-2} \mathrm{~V}$
$4.0 \times 10^{-3} \mathrm{~Wb}$	$4.0 \times 10^{-3} \mathrm{~V}$
$2.4 \times 10^{-2} \mathrm{~Wb}$	$2.4 \times 10^{-2} \mathrm{~V}$
$2.4 \times 10^{-2} \mathrm{~Wb}$	$4.0 \times 10^{-3} \mathrm{~V}$

45. a) A proton moves with a speed of $3.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$ at right angles to a uniform $5.0 \times 10^{-5} \mathrm{~T}$ magnetic field. What is the radius of curvature for the motion of the proton?
b) Describe the path of the proton in the magnetic field and use principles of physics to explain the proton's motion.
46. A computer adapter contains a transformer that converts 120 V ac across its primary windings to 24 V ac across its secondary windings. The primary current is 1.2 A . What is the secondary current and what is the type of transformer?
a. 0.24 A, Step-up
b. 0.24 A, Step-down
c. 6.0 A, Step-up
d. 6.0 A, Step-down
47. An automobile starter motor, connected to a 12.0 V battery, produces a back emf of 9.7 V when operating at normal speed. A malfunction prevents the starter motor from turning and the current increases to 180 A . What current does the starter motor draw when operating normally?
48. An electric motor is connected to a 9.0 V power supply. The data table below shows how the back emf of the motor, $V_{b a c k}$, varies with the current through the armature, I, as the mechanical load changes.

Back emf (V)	7.5	6.0	4.5	3.0	1.5	0.0
Current (A)	1.0	2.0	3.0	4.0	5.0	6.0

a. Plot this data on the graph below.
b. Determine the slope of the graph.
c. What property of the motor does the slope of this graph represent?
49. An electric device operates on 9.0 V ac and has a total resistance of 21Ω. An ideal transformer is used to change the incoming line voltage of 120 V ac to the operating voltage of 9.0 V ac .
a. Is the transformer a step-up or step-down transformer?
b. What is the current in the primary side?
50. A motor is connected to a 12 V dc supply and draws 5.0 A when it first starts up. What will be the back emf when the motor is operating at full speed and drawing 1.2 A?
51. An ideal transformer has a potential difference of 180 V ac across the primary windings and a potential difference of 1080 V ac across the secondary windings. There are 390 turns in the secondary. The secondary current is:
a. twice the primary current.
b. one half the primary current.
c. six times the primary current.
d. one-sixth the primary current.
52. An electric motor is connected to a 12.0 V power supply. When the armature is prevented from rotating, the current is 8.0 A . When the motor is running at normal speed, the current is 2.0 A. What is the back emf in each case?

Back emf when stationary Back emf when running

a.	0.0 V	9.0 V
b.	0.0 V	3.0 V
c.	12 V	9.0 V
d.	12 V	3.0 V

53. A transformer has 840 primary and 56 secondary windings. The primary coil is connected to a 110 V ac power supply which delivers a 0.30 A current to the transformer.
a. Find the secondary voltage.
b. Find the secondary current.
54. As a carpenter drills into a beam, friction on the drill bit causes the armature of the drill to slow down. How will the back emf and the current through the armature change as the drill slows down?

	Back emf	Current
a.	Increase	Increase
b.	Increase	Decrease
c.	Decrease	Increase
d.	Decrease	Decrease

55. An electric motor rotates at various speeds and the current through the armature changes accordingly. Which pair of conditions occurs when the motor generates the greatest back emf?
a. Fastest, largest current
b. Fastest, smallest current
c. Slowest, largest current
d. Slowest, smallest current
56. A transformer connected to a 120 V ac supply has 7000 primary and 350 secondary windings. It delivers a secondary current of 2.4 A . Find the primary current and secondary voltage.
57. A dc motor has a resistance of 2.0Ω. When connected to a 12 V source, with the motor rotating at its operational speed, a back emf of 5.5 V is generated. What is the current in the motor at operational speed?

Magnetism Review Answers

1. A (Aug. '99, 24)
2. 11A, right (Aug. '99, 25)
3. $1.1 \times 10^{-13} \mathrm{~N}$ (Aug. '99, 26)
4. 0.74T (Aug. '99, 27)
5. C (Aug. '99, 28)
6. D (Aug. '99, 30)
7. C (Jan. '99, 23)
8. 1.1N, down the page (Jan. '99, 24)
9. $5.4 \times 10^{-2} \mathrm{~N}\left(J a n .{ }^{\prime} 99,26\right)$
10. 0.32V (Jan. '99, 27)
11. 8.2×10-3 Wb (Jan. '99, 28)
12. 0.34V (Jan. '99, 29)
13. D (Jan. '99, 30)
14. A (June '99, 25)
15. $2.8 \times 10^{-13} \mathrm{~N}$ (June '99, 26)
16. 0.085 V (June '99, 27)
17. 0.089T (June '99, 7LA)
18. D (Jan. '00, 25)
19. D (June '99, 28)
20. C (Jan. '00, 25)
21. 21A (Jan. '00, 27)
22. 9.3×10-5 T (Jan. ${ }^{\prime} 00,28$)
23. B (Jan. '00, 26)
24. B (Jan. '00, 30)
25. to the left (June '00, 26)
26. B (June '00, 24)
27. 11V (Jan. '00, 7LA)
28. C (June '00, 25)
29. B (June '00, 27)
30. D (June '00, 28)
31. $a_{i}=40 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{v}_{\max }=1.9 \times 10^{2} \mathrm{~m} / \mathrm{s}$ (June '00, 30)
32. L (Aug. '00, 20)
33. L = South, $\mathrm{R}=$ North (Aug. ${ }^{\prime} 00,24$)
34. B (Aug. '00, 25)
35. 0.022N (Aug. '00, 26)
36. B (Aug. '00, 27)
37. 14V (Aug. '00, 28)
38. a) 3.2×10^{2} (Aug. '00, 7LA)
b) $1.0 \times 10^{-5} \mathrm{~Wb}$
39. $1.2 \times 10^{-18} \mathrm{C}\left(J a n .{ }^{\prime} 01,22\right)$
40. B (Jan. '01, 25)
41. D (Jan. '01, 26)
42. 0.16A counter clockwise (Jan. '01, 27)
43. A (Jan. '01, 28)
44. A (Jan. '01, 30)
45. a) 75 m
b) The path is circular. Moving charge in magnetic field produces a magnetic force. Force is perpendicular to velocity. This perpendicular force (acting on proton) produces circular motion.
46. D
47. 35 A
48. b) -1.5Ω
c) internal resistance
49. a) step-down
b) 0.032 A
50. 9.1 V
51. D
52. A
53. a) 7.3 V
b) 4.5 A
54. C
55. B
56. $I_{p}=0.12 \mathrm{~A}, \mathrm{~V}_{\mathrm{s}}=6.0 \mathrm{~V}$
57. 3.3 A
