Kinematics \#3 : Projectiles

(name)

1. A golf ball was struck from the first tee at Lunar Golf and Country Club. It was given a velocity of $48 \mathrm{~m} / \mathrm{s}$ at an angle of $40 .{ }^{\circ}$ to the horizontal. On the moon, $g=1.6$ $\mathrm{m} / \mathrm{s}^{2}$. (a) What are the vertical and horizontal components of the ball's initial velocity?

$$
\begin{aligned}
& v_{x}= \\
& v_{y}=
\end{aligned}
$$

(b) For what interval of time is the ball in flight?

$$
t=
$$

(c) How far will the ball travel horizontally?

$$
d_{y}=\underline{\square}
$$

2. A rock is thrown horizontally from the top of a cliff 98 m high, with a horizontal speed of $27 \mathrm{~m} / \mathrm{s}$. (a) For what interval of time is the rock in the air?

$$
t=
$$

(b) How far from the base of the cliff does the rock land?

$$
d_{x}=
$$

(c) With what velocity does the rock hit?

$$
v=
$$

3. An earth bound golfer strikes a golf ball giving it a velocity of $48 \mathrm{~m} / \mathrm{s}$ at an angle of $50 .{ }^{\circ}$ to the horizontal.(a) What are the vertical and horizontal components of the ball's initial velocity?

$$
\begin{aligned}
& v_{x}= \\
& v_{y}=
\end{aligned}
$$

(b) How long is the ball in the air?

$$
t=
$$

(c) What is the horizontal distance covered by the ball while in flight?

$$
d_{x}=
$$

\qquad
(d) What velocity does the ball have at the top of its trajectory?

$$
v=
$$

4. A rescue pilot wishes to drop a package of emergency supplies so that it lands as close as possible to a target. If the plane travels with a velocity of $81 \mathrm{~m} / \mathrm{s}$ and is flying 125 m above the target, how far away (horizontally) from the target must the rescue pilot drop the package?

$$
d_{x}=
$$

\qquad
Answers: 1. a) $37 \mathrm{~m} / \mathrm{s}, 31 \mathrm{~m} / \mathrm{s} \quad$ b) $39 \mathrm{~s} \quad$ c) $1.4 \times 10^{3} \mathrm{~m} \quad$ 2. a) 4.5 sb$) 120 \mathrm{~m} \mathrm{c)} 51 \mathrm{~m} / \mathrm{s}[$ 58° below horiz] 3. a) $37 \mathrm{~m} / \mathrm{s}, 31 \mathrm{~m} / \mathrm{s} \quad$ b) $7.5 \mathrm{~s} \quad$ c) $230 \mathrm{~m} \mathrm{d)} 31 \mathrm{~m} / \mathrm{s} 4.410 \mathrm{~m}$

Kinematics \#4

(name)

1. A ball is thrown with a velocity of $24 \mathrm{~m} / \mathrm{s}$ at an angle of $30 .^{\circ}$ to the horizontal.
(a) What are the vertical and horizontal components of the initial velocity?

$$
\begin{aligned}
& v_{x}= \\
& v_{y}=
\end{aligned}
$$

(b) How long is the ball in the air?

$$
t=
$$

(c) How far away will the ball land?

$$
d_{x}=
$$

(d) To what maximum height will the ball rise?
\qquad
$d_{y}=$
(e) With what velocity will the ball land?

$$
v=
$$

2. A youngster hits a baseball giving it a velocity of $22 \mathrm{~m} / \mathrm{s}$ at an angle of 62° with the horizontal. How far will the ball travel before a fielder catches it (assuming the fielder catches the ball at the same height that it is hit.)

$$
d_{x}=
$$

\qquad
3. A pebble is fired from a slingshot with a velocity of 30 . m / s. (a) If it is fired at an angle of $30 .{ }^{\circ}$ to the horizontal, what height will it reach?

$$
d_{y}=
$$

(b) If its flight is interrupted be a vertical wall 12 m away, how high above the ground will it hit the wall?

$$
d_{y}=
$$

\qquad
4. A fireman is standing on top of a building 20. m high. He finds that if he holds the hose so that water issues from it horizontally at $12 \mathrm{~m} / \mathrm{s}$, the water will hit a burning wall of an adjacent building at a height of 15 m above the ground. What is the horizontal distance from the fireman to the building?

$$
d_{x}=
$$

\qquad
Answers: 1. a) $21 . \mathrm{m} / \mathrm{s}, 12 \mathrm{~m} / \mathrm{s}$ b) 2.4 s c) 51 m d) 7.3 m e) $24 \mathrm{~m} / \mathrm{s}\left[30^{\circ}\right.$ above horiz]
2. 41 m
3. a) 11 m
b) 5.9 m up
4. 12 m

Kinematics \#5

> (name)

1. A diver takes off with a speed of $8.0 \mathrm{~m} / \mathrm{s}$ from a 3.0 m high diving board at 30 . $^{\circ}$ above the horizontal. How much later does she strike the water?

$$
t=
$$

\qquad
2. A pilot cuts loose two fuel tanks in an effort to gain altitude. At the time of release, the plane was 120 m above the ground and travelling upward at 30° to the horizontal, with a speed of $84 \mathrm{~m} / \mathrm{s}$. For how long did the tanks fall and with what speed did they hit the ground?
\qquad
$+$
3. On level ground, a ball is thrown forward and upward. The ball is in the air 2.0 s and strikes the ground $30 . \mathrm{m}$ from the thrower. What was the ball's initial velocity?

$$
v_{i}=\underline{\longrightarrow} .
$$

4. An archer standing on the back of a pickup truck moving at $28 \mathrm{~m} / \mathrm{s}$ fires an arrow straight up at a duck flying directly overhead. The archer misses the duck! The arrow was fired with an initial velocity of $49 \mathrm{~m} / \mathrm{s}$ relative to the truck.
(a) For how long will the arrow be in the air?

$$
t=
$$

(b) How far will the truck travel while the arrow is in the air?

$$
d=
$$

(c) Where, in relation to the luckless archer, will the arrow come down? Will the archer have to 'duck'?

Answers: 1.1 .3 s
2. $11 \mathrm{~s}, 97 \mathrm{~m} / \mathrm{s}\left[41^{\circ}\right.$ below horiz] $3.18 \mathrm{~m} / \mathrm{s}$ [33° above horiz]
4. a) $10 . s$
b) 280 m
c) on top of the archer, he needs to 'duck'!

