Kinematics #3 : Projectiles

(name)

1. A golf ball was struck from the first tee at Lunar Golf and Country Club. It was given a velocity of 48 $^{m}/_{s}$ at an angle of 40.° to the horizontal. On the moon, g = 1.6 $^{m}/_{s}$ ². (a) What are the vertical and horizontal components of the ball's initial velocity?

v_y = ______.

(b) For what interval of time is the ball in flight?

(c) How far will the ball travel horizontally?

2. A rock is thrown horizontally from the top of a cliff 98 m high, with a horizontal speed of $27 \, \text{m/s}$. (a) For what interval of time is the rock in the air?

(b) How far from the base of the cliff does the rock land?

d_x = _______.

(c) With what velocity does the rock hit?

v = _____.

3. An earth bound golfer strikes a golf ball giving it a velocity of 50.° to the horizontal.(a) What are the vertical and horizont the ball's initial velocity?	_
	v _x =
	v _y =
(b) How long is the ball in the air?	
	† = <u> </u>
(c) What is the horizontal distance covered by the ball while in	n flight?
	d _x =
(d) What velocity does the ball have at the top of its trajector	~y?
	v = <u> </u>
4. A rescue pilot wishes to drop a package of emergency supplied close as possible to a target. If the plane travels with a velocity flying 125 m above the target, how far away (horizontally) from the rescue pilot drop the package?	y of 81 $^{\text{m}}/_{\text{s}}$ and is
	d _× =

Answers: 1. a) 37 $^{\rm m}/_{\rm s}$, 31 $^{\rm m}/_{\rm s}$ b) 39 s c) 1.4 x 10 $^{\rm 3}$ m 2. a) 4.5 s b) 120 m c)51 $^{\rm m}/_{\rm s}$ [58 $^{\rm o}$ below horiz] 3. a) 37 $^{\rm m}/_{\rm s}$, 31 $^{\rm m}/_{\rm s}$ b) 7.5 s c) 230 m d) 31 $^{\rm m}/_{\rm s}$ 4. 410 m

Kinematics #4

(name)

1. A ball is thrown with a velocity of 24 $^{\rm m}/_{\rm s}$ at an angle of 30.° to the horizontal.

(a) What are the vertical and horizontal components of the initial velocity?

v_× = _______.

(b) How long is the ball in the air?

(c) How far away will the ball land?

d_x = ______.

(d) To what maximum height will the ball rise?

d_y = _______.

(e) With what velocity will the ball land?

v = ____

2. A youngster hits a baseball giving it a velocity of 22 $^m/_s$ at an angle of 62° with the horizontal. How far will the ball travel before a fielder catches it (assuming the fielder catches the ball at the same height that it is hit.)

d_x = _______.

3. A pebble is fired from a slingshot with a velocity of 30. $^m/_s$. (a) If it is fired at	
an angle of 30.° to the horizontal, what height will it reach?	

(b) If its flight is interrupted be a vertical wall 12 m away, how high above the ground will it hit the wall?

$$d_y = \underline{\hspace{1cm}}$$

4. A fireman is standing on top of a building 20. m high. He finds that if he holds the hose so that water issues from it horizontally at 12 $^{m}/_{s}$, the water will hit a burning wall of an adjacent building at a height of 15 m above the ground. What is the horizontal distance from the fireman to the building?

Answers: 1. a) 21.
$$^{m}/_{s}$$
, 12 $^{m}/_{s}$ b) 2.4 s c) 51 m d) 7.3 m e) 24 $^{m}/_{s}$ [30° above horiz] 2. 41 m 3. a) 11 m b) 5.9 m up 4. 12 m

Kinematics #5

(name)

1. A diver takes off with a speed of 8.0 $^{\rm m}/_{\rm s}$ from a 3.0 m high diving board at 30.° above the horizontal. How much later does she strike the water?

t = ______

2. A pilot cuts loose two fuel tanks in an effort to gain altitude. At the time of release, the plane was 120 m above the ground and travelling upward at 30° to the horizontal, with a speed of 84 $^{\rm m}/_{\rm s}$. For how long did the tanks fall and with what speed did they hit the ground?

v_f = ______. † = _____.

_	is thrown forward and upward. The ball O.m from the thrower. What was the ba	
		v _i =
straight up at a duck flyi	the back of a pickup truck moving at 28ing directly overhead. The archer misses nitial velocity of 49 $^{ m m/_s}$ relative to the tarrow be in the air?	the duck! The
		† =
(b) How far will the truc	k travel while the arrow is in the air?	
		d =
(c) Where, in relation to archer have to 'duck'?	the luckless archer, will the arrow come	down? Will the
Answers: 1. 1.3 s 4. a) 10. s b) 280 m	2. 11s, 97 $^{m}/_{s}$ [41° below horiz] 3. 18 $^{m}/_{s}$ c) on top of the archer, he needs to 'du	_