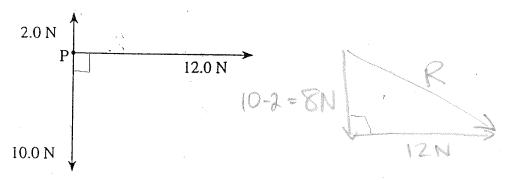

Kinematics Review

1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (assume no friction)

	VERTICAL ACCELERATION	HORIZONTAL SPEED		
A.	constant	constant 🗸		
B.	constant 🗸	changing		
C.	changing	constant		
D.	changing	changing		

- 2 Which one of the following contains two vector quantities?
 - A. Mass, velocity
 - B. Time, momentum
 - C Force, acceleration
 - D. Speed, displacement
- 3. The diagram below shows two force vectors \vec{F}_1 and \vec{F}_2 acting on an object at point P.



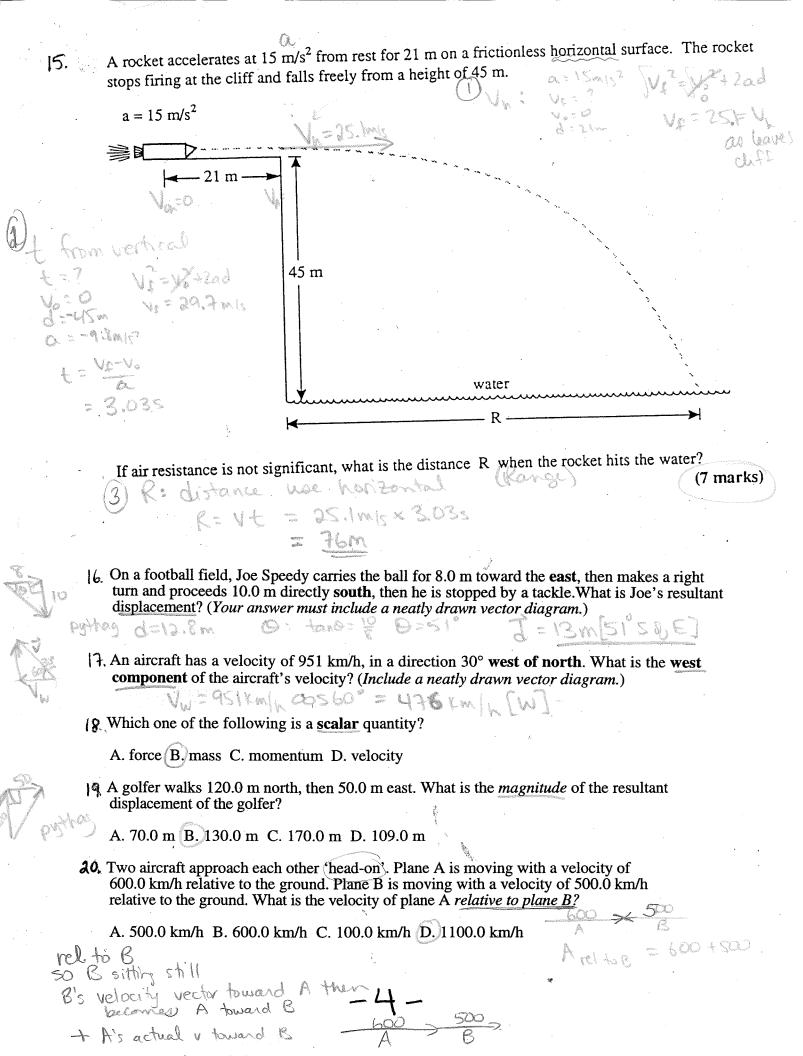
What is the magnitude of the resultant force?

- A. 3.0 N
- B. 5.0 N
- C. 7.0 N
- D. 14.3 N

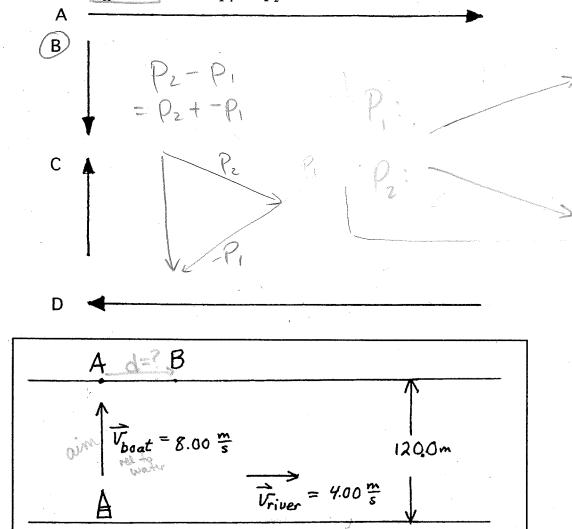
VERTICAL COMPONENT A. 16 m/s 7.6 m/s 16 m/s 7.6 m/s 16 m/s C. 20 m/s 9.3 m/s D. 9.3 m/s 7. The graph shown below displays velocity ν versus time t for a moving object. The slope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A.	Which	of the following is their re			d \vec{F}_H . \vec{F}_V	\vec{F}_H
will follow a path that is A. circular. B. elliptical. D. hyperbolic. 6. A rock is thrown from ground level at 18 m/s, 25° above horizontal. What are the vertical and horizontal components of its launch velocity? VERTICAL COMPONENT HORIZONTAL COMPONENT A. 16 m/s D. 7.6 m/s 16 m/s D. 9.3 m/s D. 0.5 m/s D. 0.5 m/s D. 0.5 m/s D. 0.7 0	Α.	F	\vec{F}	C.	\vec{F}	\vec{F}
B. elliptical. D. hyperbolic. 4 A rock is thrown from ground level at 18 m/s, 25° above horizontal. What are the vertical and horizontal components of its launch velocity? VERTICAL COMPONENT HORIZONTAL COMPONENT A. 16 m/s T. 6 m/s T. 6 m/s T. 6 m/s The graph shown below displays velocity v versus time t for a moving object. The slope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s. 30° above horizontal. How much time will at take to reach its maximum height? H. 1.2 S. B. 2.15 C. 2.45 D. 7.35 A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is b. A, O, O+3 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. a) What is the height h of the cliff? b) How far from the base of the cliff? b) How far from the base of the cliff? did the rock hand? b) How far from the base of the cliff? did the rock hand? Canark	 A ball is kid will follow 	cked into the air from the su a path that is	rface of a playing field	I. If friction is neg	digible, the ball	
VERTICAL COMPONENT HORIZONTAL COMPONENT A. 16 m/s 7.6 m/s 16 m/s C. 20 m/s 9.3 m/s D. 9.3 m/s 20 m/s 7. The graph shown below displays velocity \(\nu\) versus time \(t\) for a moving object. The slope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will if take to reach its maximum height? A. 1, 2s B, 2, 15 C, 2, 45 D, 7, 35 9. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A, 0, 0, 0, 43 m/s A, 0, 0, 43 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 25° a) What is the height \(h\) of the cliff? (4 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (4 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (4 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) how far from the base of the cliff? (3 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (3 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (4 mark) have far from the base of the cliff? (4						
A. 16 m/s 7.6 m/s 16 m/s 7.6 m/s 16 m/s 7.6 m/s 16 m/s 7.6 m/s 9.3 m/s	6. A rock is the	rown from ground level at at a components of its launc	18 m/s, 25° above h velocity?	orizontal. What a	re the vertical	- V = 18 SiA
B. 7.6 m/s 16 m/s C. 20 m/s 9.3 m/s D. 9.3 m/s 20 m/s The graph shown below displays velocity v versus time t for a moving object. The slope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. A. l. 2.s B. 2.1 S. 2.4 S. 2.7 A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. O. O. 43 m/s B. O. O. 50 m/s C. O. (10 m/s) D. 0.90 $\frac{32}{52}$ 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. B. O. O. 50 m/s	V	ERTICAL COMPONENT	HORIZONTAL CO	MPONENT		
The slope of this graph represents the object The slope of this graph represents the object The slope of this graph represents the object A mass. B momentum. C acceleration. D. displacement. A mass. B momentum. A mass. B momentum. A mass. B momentum. A mass. B momentum. C acceleration. D. displacement. A mass. A mass. B momentum. C acceleration. D. displacement. A mass. A mass. B momentum. C acceleration. D. displacement. A mass. A mass. B momentum. C acceleration. D. displacement. A mass. A mass. B momentum. C acceleration. D. displacement. A mass. B momentum. B nother accel	- Andrews	16 m/s	7.6 m/s			
The graph shown below displays velocity ν versus time t for a moving object. The slope of this graph represents the object. A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.2s. B. 2.15. C. 2.45. D. 7.35. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0.0435n/s² B. 0.050 m/s² C. 0.10 m/s² D. 0.90 s² 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 25° a) What is the height h of the cliff? b) How far from the base of the cliff d did the rock land? b) How far from the base of the cliff d did the rock land? c) mark	(B.)	7.6 m/s	16 m/s	******		1
The graph shown below displays velocity v versus time t for a moving object. The stope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1,2s B. 2,15 C. 2,4s D. 7,35 q. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0,043 m/s B. 0,050 m/s C. 0,10 m/s D. 0,90 % 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. a) What is the height h of the cliff? (4 marl b) How far from the base of the cliff d did the rock land? b) How far from the base of the cliff d did the rock land? (3 mark) 10. A rock is thrown from d did the rock land? (4 marl b) How far from the base of the cliff d did the rock land?	C.	20 m/s	9.3 m/s			
The slope of this graph represents the object A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.2s B. 2.1s C. 2.4s D. 7.3s A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0.043 m/s A. 0.043 m/s B. 0.050 m/s C. 0.10 m/s D. 0.90 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 3 What is the height h of the cliff? 4 mark b) How far from the base of the cliff d did the rock land? (3 mark) (3 mark)	D	9.3 m/s	20 m/s			
A mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.2s. B. 2.1s. C. 2.4s. D. 7.3s. 9. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is acceleration is A. 0.043 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 11. Solve the horizontal is the height h of the cliff? 12. Solve the horizontal is the height h of the cliff? 13. Mhat is the height h of the cliff? 14. mark 15. Solve the horizontal is the height h of the cliff? 16. Solve the horizontal is the height h of the cliff? 17. Solve the horizontal is the height h of the cliff? 18. Solve the horizontal is the height h of the cliff? 19. How far from the base of the cliff? 19. How far from the base of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff? 10. Solve the horizontal is the height h of the cliff?	The graph sl	nown below displays veloci	ty v versus time t for	r a moving object.	· · · · · · · · · · · · · · · · · · ·	
A. mass. B. momentum. C. acceleration. D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.2s B. 2.1s C. 2.4s D. 7.3s 9. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is acceleration is A. 0.043 m/s A. 0.043 m/s B. 0.050 m/s C. 0.(0 m/s D. 0.90 g/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 125° a) What is the height h of the cliff? (4 marl b) How far from the base of the cliff? (3 mark) 16. A mass. B. momentum. C. acceleration. D. displacement. 18 m/s A. 0.043 m/s A. 0.044 m/s A		v			The slope of this gra	The represents the object
8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.25 B. 2.15 C. 2.45 D. 7.35 A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0.043 fn/s B. 0.050 m/s C. 0.10 m/s D. 0.90 s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. How far from the base of the cliff? (4 mark) (3 mark) (3 mark)		1.				
D. displacement. 8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will it take to reach its maximum height? A. 1.2s B. 2.1s C. 2.4s D. 7.3s 9. A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is deceleration is deceleration is deceleration. A. 0.043 m/s² Br. 0.050 m/s² C. 0.10 m/s² D. 0.90 %² 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 12. miles and the cliff? (4 mark b) How far from the base of the cliff? (4 mark b) How far from the base of the cliff? (3 mark control of the cliff? (3 mark control of the cliff?)	v .					W. Y. a
8. A ball is thrown from level ground at 24 m/s, 30° above horizontal. How much time will if take to reach its maximum height? A. 1.2s B. 2.1s C. 2.4s D. 7.3s A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0.043 m/s A. 0.043 m/s B. 0.050 m/s C. 0.10 m/s D. 0.90 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 18 m/s 25° a) What is the height h of the cliff? (4 mark) How far from the base of the cliff d did the rock land? (3 mark) What is the height h of the cliff? (4 mark) A constant of the cliff d did the rock land? (3 mark)					C. acceleration.	run At
A. 1.2s B. 2.15 C. 2.4s D. 7.3s 9 A motorcycle accelerates uniformly from 12 m/s to 30 m/s while travelling 420 m. Its acceleration is A. 0.043 m/s B. 0.050 m/s C. 0.10 m/s D. 0.90 m/s 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 18 m/s 25° 10. How far from the base of the cliff? (4 mark b) How far from the base of the cliff? (3 mark constants) 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later.	~	-,-			D. displacement.	
A, 0.043 sn/s ² B, 0.050 m/s ² C_1 0.10 m/s ² D 0.90 m/s ² 10. A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. a) What is the height h of the cliff? (4 mark b) How far from the base of the cliff? (3 mark constant b) How far from the base of the cliff? (3 mark constant b) How far from the base of the cliff? (4 mark constant b) How far from the constant b) How far from the cliff? (4 mark constant b) How far from the cliff? (4 mark constant b) How far from the cliff? (4 mark constant b) How far from the cliff? (4 mark constant b) How far from the cliff? (4 mark constant b	A motorcyc	B. 2.15			420 m. Its	VI = O A = A VANS
A rock is thrown from a clifftop at 18 m/s, 25° above the horizontal. It lands on the beach 4.2 s later. a) What is the height h of the cliff? (4 mark) b) How far from the base of the cliff d did the rock land? (3 mark) 18.3 m/s 1		. (0)	0.050 1/52	C. 0.10	m/2 000	ne
a) What is the height h of the cliff? (4 mark b) How far from the base of the cliff d did the rock land? (3 mark lb. 3 lm/s) $d = (16.3 \text{ lm/s})(4.2 \text{ s})$		rown from a clifftop at 18			2000 (SS)	~ 5 2
b) How far from the base of the cliff d did the rock land? (3 mark 16.31 m/s (4.2) (4.2) (4.3) m/s (4.2)	· · · · · · · · · · · · · · · · · · ·		V	a) What is th	e height h of the cliff	? (4 mark
$\frac{d}{dt} = \frac{16.3 \text{lm}_{1} \text{M}_{2} \text{M}_{2}}{4.25} + \frac{16.3 \text{lm}_{1} \text{M}_{2} \text{M}_{2}}{4.25}$ $= \frac{69 \text{m}_{1}}{4.6 \text{lm}_{1} \text{M}_{2} \text{M}_{2}} = \frac{69 \text{m}_{2}}{4.6 \text{lm}_{1} \text{M}_{2} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{1} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{1} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{2}$	K Sin X		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	J. a.		d did the rock land? (3 marks
$\frac{d}{dt} = \frac{16.3 \text{lm}_{1} \text{M}_{2} \text{M}_{2}}{4.25} + \frac{16.3 \text{lm}_{1} \text{M}_{2} \text{M}_{2}}{4.25}$ $= \frac{69 \text{m}_{1}}{4.6 \text{lm}_{1} \text{M}_{2} \text{M}_{2}} = \frac{69 \text{m}_{2}}{4.6 \text{lm}_{1} \text{M}_{2} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{1} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{1} \text{M}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{2}} = \frac{69 \text{lm}_{2}}{4.6 \text{lm}_{2}$	· 1.6			*		
$\frac{d}{d} = \frac{16.3 \text{lm}_{15} \text{V}_{4.25}}{4.5 \text{lm}_{15} \text{V}_{4.25}} = \frac{16.3 \text{lm}_{15} \text{V}_{4.25}}{4.5 \text{lm}_{15} \text{V}_{4.25}} = \frac{69 \text{lm}_{15} \text{lm}_{15} \text{V}_{4.25}}{4.5 \text{lm}_{15} \text{V}_{4.25}} = \frac{69 \text{lm}_{15} $		1 1			AND NOUTDAY	$A \times V_{i} = \{b_i\}$
$\frac{1}{1 + \frac{1}{2}} = \frac{1}{1 + \frac{1}{2}} = \frac{1}$		h h	1		100000000000000000000000000000000000000	
use vertical $= 69 \text{ m}$ $= 69 \text{ m}$ $= (1.6) \text{ m} \cdot (4.2s) + (-9.8)(4.2s)^2$	* * *	h 	1			
$\frac{1}{1+\frac{1}{2}} = \frac{1}{1+\frac{1}{2}} = \frac{1}{1+1$	* * *	h				
$V_{1} = \frac{1}{2} \cdot \frac{1}{2} \left(\frac{1}{2} \cdot \frac{1}{2} \right) \right) \right) \right) \right)}{1 + \frac{1}{2} \cdot \frac{1}{2$	t 16.5 kg	h				
No = 1.6/m/s = (2.6/m/X4.26) + 2(-9.8)(4.2)*	use vertical	h d			d= V +	31m/5×4.25
	use vertical				d= V +	31m/5×4.25
	use vertical			and the second s		31m/5×4.25
	use vertical			and the second s		31m/5×4.25
	use vertical		M (4.20 +	and the second s		31m/5×4.25

11. Three forces act at point P at the same time, as shown on the force vector diagram below.

What is the magnitude of the resultant force vector?


- A.) 14.4 N
- B. 17.0 N
- C. 20.0 N
- D. 24.0 N

- 82+122 = R2 25441
- 12. A ball is rolled off a horizontal roof at 16 m/s. After leaving the roof, how long will the ball take to reach a speed of 18 m/s? -


 - Α. 0.20 sB. 0.84 s
 - C. 1.8 s
 - D. 2.5 s

- a 1.5mg VIV = 8.2416-16 F
- 1= 10-10 = 0.845
- A projectile is fired with an initial velocity of 80 m/s at an angle of 37° above the horizontal. If air resistance is negligible, how much time elapses before the projectile reaches its maximum height?
 - 4.9 s
 - B. 6.5 s
 - C. 8.2 s
 - D. 16 s

- 1 = 1 = 10 + at 1 = 18 145 m/s
 1 = 10 + at
 1 = 10 + a
- An airplane heads due west with an airspeed of 78 m/s. The wind is blowing due north at 25 m/s. 14. What is the speed of the airplane relative to the ground?
 - A. 53 m/s
 - В. 78 m/s
 - C. 82 m/s
 - D. 103 m/s

21. What is the vector difference between p_1 and p_2 ?

22. A motorboat starts from one side of the river, and aims directly across the river to point A. The velocity of the boat relative to the water is 8.00 m/s. The velocity of the river is 4.00 m/s, in a direction to the right on the diagram. The distance across the river is 120.0 m. The boat ends up landing at point B. How far down the bank from A is the actual landing point B?

- A. 60.0 m
- B. 120 m
- C. 134 m
- D. 268 m

sm\a/

to is half of

OR 1200 d = 4v

- 23. During the filming of a TV show, a stuntman runs horizontally off the edge of the roof of a building 49 m high, with a horizontal velocity of 3.6 m/s.
 - (a) For how many seconds will the falling stuntman be in the air?
 - (b) How far out from the edge of the building should the safety air bag be placed so he can fall without being hurt?
- 24. A target is 5.2 m in front of you, and you aim a snowball at it, along a horizontal line, parallel with the ground. By what vertical distance will you miss the target, if you throw the snowball with a horizontal speed of 15 m/s?

 $\frac{1}{2}$ $\frac{1}$

+ d = 3.2m = 0.34 = 5 -

- 25 Snoopy is flying his WWI rescue plane at an altitude of 566 m and with a horizontal velocity of 50.0 m/s. He sees his stranded comrades on the ground ahead of him, huddled around a fire hydrant. He wants to drop an emergency kit bag containing the essentials of survival (Puppy Chow, flea collars, and a physics book), so that it lands directly where they are sitting. Calculate at what horizontal distance from his comrades he must drop the package, so that it need time & fall than K=VLt lands 'on target'. Assume no friction. (Also assume no fiction.)
- A baseball fielder can throw a ball with a speed of 35.0 m/s. On a level field, he throws the ball at an angle of 40.0° with the horizontal.
 - (a) What is the vertical component of the ball's velocity?

(b) For how many seconds will the ball be in the air?

(c) To what altitude will the ball rise?

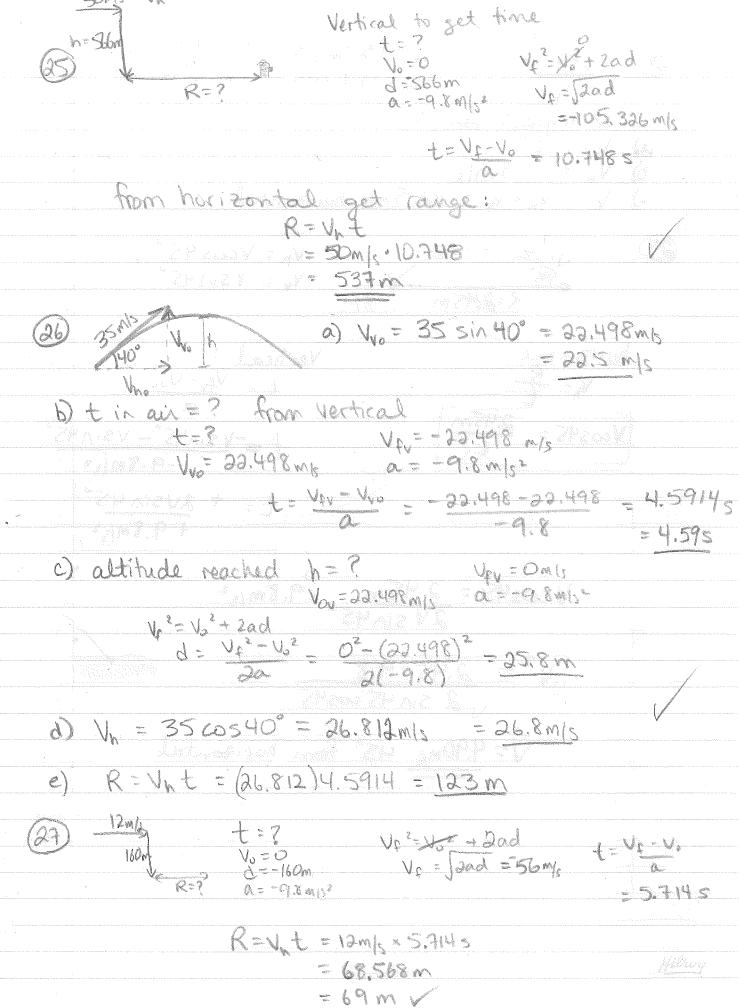
(d) What is the horizontal component of the ball's velocity?

- (e) How far will the ball travel horizontally before it is caught at the same level?
- 17. A crow flying with a horizontal velocity of 12 m/s drops a walnut from its beak onto the Coquihalla Highway below the crow. If the road is 160 m below the crow, how far will the crow fly in a horizontal direction before the walnut hits the road below it?
- 28. A projectile is launched with a velocity of 13.2 m/s, at an angle of 37.0° above the horizontal. At the highest point in its trajectory, what will be its (a) vertical velocity? (b) horizontal velocity? (c) resultant velocity?
- 29. A BMX rider with a death wish wants to clear a creek 2.45 m wide, by leaving a 45.0° ramp on one side of the creek, and landing on another ramp at the same horizontal level, on the other side of the creek. What is the initial speed the rider will need to have to accomplish this?

30 Experimental Techniques

A skier is travelling down a slope, with uniform acceleration. Her displacement was measured at various times, and the following data was gathered:

Displacement (m)	0.18	0.72	1.62	2.88	4.50
Time (s)	0.30	0.60	0.90	1.20	1.50
Macity (mig)	0.60	V-30	1,90	0.40	3,00


- (a) Plot a properly labelled, straight line graph showing the nature of the relationship between displacement and time. The independent variable must be on the X-axis, and the dependent variable on the Y-axis.
- (b) Calculate the slope of your straight-line graph, and express it in proper measuring units.
- (c) Write an equation that describes your graph specifically.
- (d) Use your slope to calculate the acceleration of the skier. (Caution. Think!)

must use instantances N. (by taking stopes of tangents on dust graph) met average

like I did.

this is

average

i i

W= 13.2m1 sin 37" = 7.944 m15 00 VN = 13.2 cos 37° = 10.542 m/s at highest point $a) V_{i} = 0$ V = 10.5 m/s V= V,+V = 10.5mb horizontal Vn=Vcos45° V= VSN453 R=2.45m horizontal: Vertical: V60545 = 2.45m -9.80016. + AUSINHS 7 9 8 WILL V COS45 = 245M x9.8m/s2 2V SIN45" 1= 2,45×9,8 5145 cos45 V=490mg 45° from horizontal

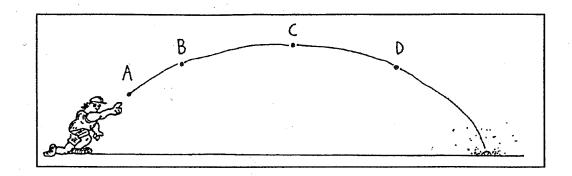
- need virstant ust

to get m = a

to get m = a

Tistant year get a

Fairly his


tangents this

tangents this Displace ment ting of a Stier 3 Displacement (m) easier Allo Stability W Whiten acce then d= 12+ zat 16 OS Time (s)

Carlotter adapt in a second of the foliability and bear for bear for bear feel and the second reaches

The state of the s

the property and the homespectate of the vertical field of the field of the second of

A ball is thrown into the air, and takes the path shown in the above figure. At A, the ball has just left the person's hand. The speed of the ball is ν , its horizontal velocity is ν_{τ} , its vertical velocity is v_{ν} , and its acceleration is a.

3\When the ball is at C, which statement is true?

$$A. v = 0$$

B.
$$v_{*} = 0$$

B.
$$v_x = 0$$

C. $v_y = 0$
D. $a = 0$

$$D a = 0$$

32. Which statement describes the acceleration of the ball accurately?

A. a = g only at A.

B. a = 0 only at C.

(C) a = g at A, B, C, or D.

D. a = g everywhere except at C.

A golf ball is thrown horizontally off the top of a very high cliff, at a speed of 12 m/s, by a golfer who is angry because he missed a short putt on the previous hole.

33. After a time interval of 2.0 s has elapsed, what will the horizontal velocity of the golf ball be?

- A. 12 m/s
- B. 0 m/s
- C. 20 m/s
- D. 32 m/s

34After a time interval of 2.0 s has elapsed, what is the vertical velocity of the golf ball?

- A. 12 m/s
- B. 0 m/s
- C. 20 m/s
- D. 32 m/s

35. After a time interval of 2.0 s has elapsed, how far has the ball travelled horizontally?

- A. 24 m
- B. 40 m
- C. 64 m
- D. 12 m

A projectile is launched with a speed of 64 m/s, at an angle of 60° to the horizontal

34. After 2.0 s, what is the vertical component of the projectile's velocity?

A. 64 m/s

B. 55 m/s

- C. 36 m/s
- D. 32 m/s
- E. 12 m/s

Samu

32. After 2.0 s, what is the speed of the projectile?

- A. 32 m/s
- B. 48 m/s
- C. 64 m/s
- D. 34 m/s
- E. 45 m/s

64 cas 6

15WP-