\qquad

Electrostatics Review Package

1. Which diagram shows the electric field near a negative point charge?
A.

B.

C.

D.

2. Which pair of values will cause the greatest deflection of an electron beam in a cathode ray tube?

	Accelerating Voltage	Deflection (Plate) Voltage
A.	400 V	20 V
B.	400 V	40 V
C.	800 V	20 V
D.	800 V	40 V

3. The magnitude of the net electric field at P in the diagram below is $5.0 \times 10^{3} \mathrm{~N} / \mathrm{C}$.

$$
Q_{1}=4.0 \times 10^{-6} \mathrm{C}
$$

4. a) Find the electric potential at point A and at point B . (Note: $1.0 \mu \mathrm{C}$ is $1.0 \times 10^{-6} \mathrm{C}$)

b) What is the potential difference between A and B ?
c) 0.036 J of work must be done to move a charge q from A to B . Find the magnitude and polarity of this charge.

$$
Q=-15.0 \mu \mathrm{C}
$$

A
B
5. The diagram shows the electric field lines near two point charges, L and R. identify the polarity of these point charges.

A.

POLARITY OF L	Polarity of R
Negative	Negative
Negative	Positive
Positive	Negative
Positive	Positive

6. An electron orbits the nucleus which carriers a charge of $+9.6 \times 10^{-19} \mathrm{C}$. If the electron's orbital radius is $2.0 \times 10^{-10} \mathrm{~m}$, what is its potential energy?
7. Two charges are positioned as shown in the diagram below.

a) Find the magnitude and direction of the electric field at A .
(Note: $1.0 \mu \mathrm{C}$ is $1.0 \times 10^{6} \mathrm{C}$)
b) A charge placed at A experiences a force of $4.0 \times 10^{-3} \mathrm{~N}$ towards the right. What are the magnitude and polarity of this charge?
8. In a cathode ray tube,
A. protons are accelerated from anode (positive) to cathode (negative).
B. protons are accelerated from cathode (negative) to anode (positive).
C. electrons are accelerated from anode (positive) to cathode (negative).
D. electrons are accelerated from cathode (negative) to anode (positive).
9. Charge Q_{1} is located 5.0 m from charge Q_{2} as shown

How much work must be done to move charge $Q_{1} 2.0 \mathrm{~m}$ closer to charge Q_{2}.
10. An electron passing between parallel plates 0.025 m apart experiences an upward electrostatic force of $5.1 \times 10^{-16} \mathrm{~N}$.

a) What is the magnitude of the electric field between the plates?
b) What is the potential difference between the plates?
c) On the diagram below draw in the connections to the power supply necessary for the electron to experience this upward force.

11. Which of the following diagrams shows the electric field between two equal but opposite charges?
A.

B.

C.

D.

12. A proton initially at rest is accelerated between parallel plates through a potential difference of 700 V .

What is the maximum speed reached by the proton?

13. What are the magnitudes of the electric field and the electric potential at point P midway between the two fixed charges?

	MAGNITUDE OF ELECTRIC FIELD	Electric Potential
A.	$0 \mathrm{~N} / \mathrm{C}$	0 V
B.	$0 \mathrm{~N} / \mathrm{C}$	30000 V
C.	$10000 \mathrm{~N} / \mathrm{C}$	0 V
D.	$10000 \mathrm{~N} / \mathrm{C}$	30000 V

14. A charge q of $30.0 \mu \mathrm{C}$ is moved from point X to point Y .

How much work is done on the $30.0 \mu \mathrm{C}$ charge? (Note: $1.0 \mu \mathrm{C}$ is $1.0 \times 10^{6} \mathrm{C}$)
15. An electron in the electric field has an electric force acting on it in what direction?

16. What is the potential at point P due to the two fixed charges as shown?

$2.0 \times 10^{-6} \mathrm{C}$
17. A moving proton has $6.4 \times 10^{-16} \mathrm{~J}$ of kinetic energy. The proton is accelerated by a potential difference of 5000 V between parallel plates.

The proton emerges from the parallel plates with what speed?
18. a) How much work is done in moving an electron from point X to point Y ?

b) What is the potential difference between point X and point Y ?
19. The electric field is uniform between
A. two positive point charges.
B. two negative point charges.
C. two opposite point charges.
D. two oppositely charged parallel plates.
20. What is the magnitude and direction of the electric field at point P due to the two fixed charges?

	Electric Field at Point P	
	MAGNITUDE	Direction
A.	$6800 \mathrm{~N} / \mathrm{C}$	Right
B.	$6800 \mathrm{~N} / \mathrm{C}$	Left
C.	$11000 \mathrm{~N} / \mathrm{C}$	Right
D.	$11000 \mathrm{~N} / \mathrm{C}$	Left

21. A proton with kinetic energy of $2.1 \times 10^{-17} \mathrm{~J}$ is moving into a region of charged parallel plates. The proton will be stopped momentarily in what region?

22. A proton, initially at rest at point X, will have what speed at point Y ?

23. Which of the following best describes how electric potential varies with distance in the region around a point charge?
A. $\quad V \propto r$
B. $\quad V \propto \frac{1}{r}$
C. $\quad V \propto r^{2}$
D. $V \propto \frac{1}{r^{2}}$
24. Three identical positive electric charges are fixed as shown in the diagram below.

What is the direction of the net electric force on Q_{2} due to Q_{1} and Q_{3} ?
25. In an experiment, a positively charge oil droplet weighing 6.5×10^{-15} N is held stationary by a vertical electric field as shown in a diagram.

If the electric field strength is $5.3 \times 10^{3} \mathrm{~N} / \mathrm{C}$, what is the charge on the oil droplet?

Electrostatics Answers

1. D (Aug '99, 18)
2. B (Aug '99, 19)
3. 3.0×10^{-6} (Aug '99, 20)
4. a) $\mathrm{V}_{\mathrm{A}}=-4.5 \times 10^{4} \mathrm{~V} \quad \mathrm{~V}_{\mathrm{B}}=-2.7 \times 10^{4} \mathrm{~V}$ (Aug '99, 5LA)
b) $1.8 \times 10^{4} \mathrm{~V}$
c) $+2.0 \times 10^{-6} \mathrm{C}$
5. A (Jan. '99, 18)
6. $-6.9 \times 10^{-18} \mathrm{~J}\left(\mathrm{Jan}{ }^{\prime} 99,19\right)$
7. a) $\mathrm{E}=2.5 \times 10^{3} \mathrm{~N} / \mathrm{C}$ to the left (Jan '99, 5LA)
b) $-1.6 \times 10^{-6} \mathrm{C}$
8. D (June '99, 19)
9. 1.2×10^{-2} (June '99, 20)
10. a) $3.2 \times 10^{3} \mathrm{~N} / \mathrm{C}$ (June '99, 5LA)
b) 80 V
c)

11. A (Jan. '00, 19)
12. $3.7 \times 10^{5} \mathrm{~m} / \mathrm{s}\left(\right.$ Jan. $\left.{ }^{\prime} 00,20\right)$
13. C (Jan '00, 21)
14. $\mathrm{W}=\Delta \mathrm{E} \rightarrow \mathrm{EPy}-\mathrm{E}_{\mathrm{Px}} \rightarrow 3.9 \mathrm{~J}$ (3.94J) (Jan '00, 5LA)
15. West (June '00, 18)
16. $7.1 \times 10^{3} \mathrm{~V}$ (June '00, 19)
17. $1.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (June '00, 20)
18. a) $2.4 \times 10^{-15} \mathrm{~J}$ (June ' 00 , 5LA)
b) $1.5 \times 10^{4} \mathrm{~V}$
19. D (Aug '00, 18)
20. B (Aug '00, 19)
21. L (Aug '00, 20)
22. 2.0x10 ${ }^{6} \mathrm{~m} / \mathrm{s}$ (Aug. '00, 5LA)
23. B (Jan'01, 20)
24. to the left (Jan '01, 20)
25. $1.2 \times 10^{-18} \mathrm{C}$ (Jan. ${ }^{\prime} 01,22$)
