This week in Pre Cal, we learned how to multiply and divide rational expressions. Rational expressions are equations or quotients that have polynomials on most likely both the bottom and top, each with their own variables. It would be very difficult if not impossible to divide a polynomial by another polynomial without using a calculator. This is why we have to take steps in finding and making binomials that are easy to cancel out on both the bottom and top.
Disclaimer: When canceling out polynomials or numbers, one must be on the top of the division and the other on the bottom. It does not matter if the polynomial or number is apart of the same quotient, as long as one is somewhere on the top, and the other somewhere on the bottom. Also, if you must divide by another fraction/quotient, flip the fraction around to make it a multiplication. Ex. 1/2 ÷ 2/3 –> 1/2 x 3/2
First, we must find the “non-permissible” values, which are essential ‘x’. Contrary to the last unit, instead of ‘x’ equalling only specific numbers, in this chapter, ‘x’ cannot equal specific number. Therefore, ‘x’ would be 0 making, for example, the equation 3/0 which is impossible. Next, you must find alike polynomials, mostly binomials, by factor them. We try and make it so that a polynomial on the top and the bottom both have the same polynomial so that they can cancel each other out, making the equation easier to solve. Watch out for negatives (-) or any small details because when you cancel out polynomials, they both have to be the exact same. Then after canceling out all that is possible, you should be left with regular, real numbers. If so, you are allowed to cancel those out too. Once finished those steps, you should be left with an easy multiplication that will give you your answer.
Q1.) 16/45 x 25/42 x 21/24 x 12/8
Ans.) 15/18