Week 6 – Solving Quadratic Equations Using Factoring

This week we learned how to solve a quadratic equation using factoring.

In order to solve the equation the zero product law must be used.

a*b=0, so either a=0 or b=0.

both sides if the equals sign must be equal.

for example: 8(x+2)(x-7)=0

x+2=0

so x=-2

also, x-7=0

so x=7

a quadratic equation has two possible answers. If you plug either of them into the equation, it should work.

8(x+2)(x-7)=0

x=-2

8(-2+2)(-2-7)=0

8(0)(-9)=0

8(0)=0

0=0

to solve any quadratic equation, the product must be 0. The equation cannot work without it.

Leave a Reply