Week 6 blog post

On this week, I learned Solving Quadratic Equations, Using Square Roots to Solve Quadratic Equations, and Using the Quadratic Formula to Solve Quadratic Equations. Its form is ax^2 + bx+ c=0

 Solving Quadratic Equations.The zero product property a*b=0   (x+2)(x-7)=0  x+2=0, x-7=0    x=-2, 7                                                                                                                                                           (2x+1)(3x-5)=0  2x+1=0, 3x-5=0    x=\frac{-1}{2}, \frac{5}{3}                                                                                                                                                   x^2 – 81=0 -> factor  (x+9)(x-9)=0  x= 9,  -9                                                                                                                                                                                                           10x^2 – 90x=0 -> Find a common factor   10x(x-9)=0   x= 0, 9                                                                                                                                    x^2 -9x -22 = 0 -> factor   (x-11)(x+2)=0  x=11, -2

If the right side of the equation is not equal to zero, so expand the left side. Collect all terms on the left side to get 0 on the right side. Factor the trinomial. Use the zero product property.

ex) (3x+1)(x-6)=22      (3x+1)(x-6)-22=0       3x^2 – 7x-6-22=0     3x^2 -7x-28=0 -> factor   (3x+4)(x-7)=0   x= \frac{-4}{3}, 7

Using Square Roots to solve Quadratic Equations

Solve each equation. Verify the solution

2x^2 – 1 = 5     -> + 1 each side         2x^2 = 6  -> divide  2 each side   x^2 = 3  -> take the square root of each side x =  \sqrt{3}      2\sqrt{3}^2 – 1 =  5                 It is right.     This example, a is 1. It is easy but If a is not 1, It will be very complex.

\frac{-1x^2}{2} +6x -1 =0  -> Multiply each side by -2  x^2 – 12 + 2 = 0 -> half of the middle coefficient, then squared it  x^2 – 12x + 36 – 36 + 2 = 0   -> factor the perfect square   (x-6)^2= 34 -> take the square root of each side    x-6= +-\sqrt{34} x= 6 ±\sqrt{34}

Using the Quadratic Formula to solve Quadratic Equation. In this chapter we have to know Formula. The formula is x= \frac{-b+- \sqrt{b^2 - 4ac}}{2a} and a should be not zero. It can be used to determine the solution of any quadratic equation written in the form $latex ax^2 + bx + c = 0

x^2 + 2x + 1 = 0                x  =   \frac{-2+- \sqrt{4+4}}{2}        x   =   \frac{-2+- 2\sqrt{2}}{2}              x=-1+-\sqrt{2}

 

Week 5 blog post

On this chapter, we learned Factoring Polynomial Expressions.

We learned important five words.

Common              15x+5xy  ->   5x(5+y)

Difference of squares         x^2 – 81  ->  (x+9)(x-9)

Pattern           x^2 +x+#                              x^2 +8x+12

product(12)        sum(8)

1* 12                    2*6
2* 6
3* 4

Easy                     1x^2

x^2 +17x+72         product(72) : 1*72, 2*36, 3*24, 4*18, 6*12, 8*9             sum(17) : 8*9              (x+8)(x+9)

Ugly                      ax^2

5x^2 -7x+2           product(10) : 1*10, 2*5             sum(-7) : 2*5                  (5x-2)(x-1)

In Factoring Polynomial Expressions, there are some difficult case.

ex) x^2 +1.5x+0.5   ->    x^2 +\frac{15x}{10} + \frac{5}{10}

->  \frac{10x^2}{10} + \frac{15x}{10} + \frac{5}{10}

->  Find Common Factor        \frac{1}{2}(2x^2 +3x+1)                  product(2) : 1*2   sum(3) : 1*2

-> \frac{1}{2}(2x+1)(x+1)

In this case, we have to solve it this way. In this chapter, to find common factor is very important.

 

 

 

 

Week 4 blog post

Sum this expression

3\sqrt{5} +4\sqrt{7} = 3\sqrt{5} +4\sqrt{7}

It can not be added, because it is same with x, y. Like 3x+4y. So it can not be added.

Sum this expression

2\sqrt{3} + 6\sqrt{11}\sqrt{3} + 13\sqrt{11} = \sqrt{3} + 19\sqrt{11}

simplify this expression

(3\sqrt{7})(2\sqrt{3} + 7\sqrt{13}) = 6\sqrt{21}+ 21\sqrt{91}

On this chapter, I learned, the number in the root is same, it can be added and subtracted. But multiplication is possible to multiple that the number in root is not same. Also I learned new words. Like index, radicand, and radical.

10\sqrt{15}  In this root, index is 10, radicand is 15, and they are called radical.

 

 

Week 3 blog post

Arrange in order from greatest to least.

 

2\sqrt{10} ,                8,              3\sqrt{7},           4\sqrt{3},                 5\sqrt{2},                               2\sqrt{13}

These are mixed radical, So I will changed to entire radical to compare easily.

\sqrt{40},               \sqrt{64},               \sqrt{63},               \sqrt{48},                    \sqrt{50},                \sqrt{52}

These are more easily to compare which one is bigger or less.

Arrange.        8,   3\sqrt{7},            2\sqrt{13},       5\sqrt{2},      4\sqrt{3},           2\sqrt{10}

 

 

Because of this chapter, I completely understand about root.