Week 6 blog post

On this week, I learned Solving Quadratic Equations, Using Square Roots to Solve Quadratic Equations, and Using the Quadratic Formula to Solve Quadratic Equations. Its form is ax^2 + bx+ c=0

 Solving Quadratic Equations.The zero product property a*b=0   (x+2)(x-7)=0  x+2=0, x-7=0    x=-2, 7                                                                                                                                                           (2x+1)(3x-5)=0  2x+1=0, 3x-5=0    x=\frac{-1}{2}, \frac{5}{3}                                                                                                                                                   x^2 – 81=0 -> factor  (x+9)(x-9)=0  x= 9,  -9                                                                                                                                                                                                           10x^2 – 90x=0 -> Find a common factor   10x(x-9)=0   x= 0, 9                                                                                                                                    x^2 -9x -22 = 0 -> factor   (x-11)(x+2)=0  x=11, -2

If the right side of the equation is not equal to zero, so expand the left side. Collect all terms on the left side to get 0 on the right side. Factor the trinomial. Use the zero product property.

ex) (3x+1)(x-6)=22      (3x+1)(x-6)-22=0       3x^2 – 7x-6-22=0     3x^2 -7x-28=0 -> factor   (3x+4)(x-7)=0   x= \frac{-4}{3}, 7

Using Square Roots to solve Quadratic Equations

Solve each equation. Verify the solution

2x^2 – 1 = 5     -> + 1 each side         2x^2 = 6  -> divide  2 each side   x^2 = 3  -> take the square root of each side x =  \sqrt{3}      2\sqrt{3}^2 – 1 =  5                 It is right.     This example, a is 1. It is easy but If a is not 1, It will be very complex.

\frac{-1x^2}{2} +6x -1 =0  -> Multiply each side by -2  x^2 – 12 + 2 = 0 -> half of the middle coefficient, then squared it  x^2 – 12x + 36 – 36 + 2 = 0   -> factor the perfect square   (x-6)^2= 34 -> take the square root of each side    x-6= +-\sqrt{34} x= 6 ±\sqrt{34}

Using the Quadratic Formula to solve Quadratic Equation. In this chapter we have to know Formula. The formula is x= \frac{-b+- \sqrt{b^2 - 4ac}}{2a} and a should be not zero. It can be used to determine the solution of any quadratic equation written in the form $latex ax^2 + bx + c = 0

x^2 + 2x + 1 = 0                x  =   \frac{-2+- \sqrt{4+4}}{2}        x   =   \frac{-2+- 2\sqrt{2}}{2}              x=-1+-\sqrt{2}

 

Leave a Reply

Your email address will not be published. Required fields are marked *