7.6 - Vertex Form of a Quadratic Function

Quadratic functions can be written in general form or vertex form.
General Form: $y=a x^{2}+b x+c \quad$ Vertex Form: $y=a(x-p)^{2}+q$

Investigation \#1

Analyzing the Graph of $y=x^{2}+q$

The graph of $y=f(x)=x^{2}$ is shown.

$$
y=x^{2}+3 \quad y=x^{2}-3
$$

What do we know?

Investigation \#2 Analyzing the Graph of $y=(x-p)^{2}$
The graph of $y=f(x)=x^{2}$ is shown.

$$
y=(x-2)^{2} \quad y=(x+2)^{2}
$$

What did we learn?

Show me you understand:

Equation Reqresenting Function	Vertex	Max/Min Value	Equation of Axis of Symmetry
$y=x^{2}$	$(0,0)$	$\min , 0$	$x=0$
$y=(x+2)^{2}-4$			
$y=-2(x-7)^{2}+5$			
y			

Time to show off:
Consider the graph of the function $f(x)=(x-2)^{2}+3$.
a) Without using a graphing calculator, sketch the graph on the grid.
b) State the coordinate of the vertex.
c) State the maximum or minimum value of the function.
d) State the domain and range of the function.

Example: Determine the quadratic function corresponding to this parabola.

