7.7 - Using the Quadratic Formula

The quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has the roots

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Before we get started, a few helpful hints:

Example 1: Solve the quadratic equation $4 x^{2}-3=7 x$. Give an exact answer and an approximate answer to 3 decimal places.

Example 2: Solve the quadratic equation $2 x^{2}+8 x-5=0$

Example 3: Solve the quadratic equation $x^{2}+9 x+23=0$. Draw a really quick sketch to demonstrate what you found out.

One that works: $x^{2}+5 x-6=0$
Factoring:

Working with a partner, write the steps to solve this problem.
A store rents an average of 750 video games each month at a current rate of $\$ 4.50$. The owners of the store want to raise the rental rate to increase the revenue to $\$ 7000$ per month. However, for every $\$ 1$ increase, they know that they will rent 30 fewer games each month. The following function relates the price increase, p to the revenue, r.

$$
(4.5+p)(750-30 p)=r
$$

Can the owners increase the rental rate enough to generate revenue of $\$ 7000$ per month?

