### 6.2 Interpreting Graphs

## Prescribed Learning Outcomes (PLO'S):

- Extend a given graph (extrapolate) to determine the value of an unknown element
- Interpolate the approximate value of one variable on a given graph given the value of the other variable
- Extrapolate the approximate value of one variable from a given graph given the value of the other variable
- Solve a given problem by graphing a linear relation and analysing the graph

Terminology
Dependent Variable: graphed on the vertical axis; e.g. cost
Independent Variable: graphed on the horizontal axis; e.g. time,
Interpolate: estimate a value between two given values
Extrapolate: estimate a value beyond a given set of values
Slope: describes the steepness of a line
y-intercept: Where the graph crosses the $y$-axis. The x-coordinate is zero

Example 1: Joseph is considering two different payment plans for his gym membership. Plan A charges a flat fee of $\$ 45.00$ each month. Plan B charges a flat fee of $\$ 25.00$ each month plus $\$ 2.50$ per visit.
a) Make a table for each plan to show the monthly cost for 1 , $2,3 \& 4$ visits per month. Use $C$ to represent cost and $n$ to represent the number of visits.
b) Write a linear relation to represent the cost per month of each plan.
c) Graph the two linear relations.
d) Does it make sense to connect the points on the graphs? Explain.
e) Use the graph to help you identify the number of visits required for the two plans to have the same cost.
f) If Joseph planned to visit the gym 10 times per month, which plan would cost less? How much less would it cost him?


Example 2: The graph below represents Sally’s daily Profit at her pie shop. The horizontal axis represents the number of pies sold and the vertical axis represents the Profit in dollars.
a) How many pies must Sally sell in one day to break even?
b) If Sally has made a profit of $\$ 15$, how many pies has she sold?
c) How much profit does Sally make on each pie?
d) What does the y-intercept of - 30 mean?
e) Write a linear equation to represent the graph.
e) If Sally sells 50 pies in one day, what will the profit be?
f) Could the points be connected in this graph? What assumptions are you making?


Example 3: A cell phone company charges a $\$ 33.95$ monthly fee and long distance charges at a rate of $\$ 0.35$ per minute. The graph shows the monthly cost of cell phone calls based on the number of long distance minutes.
a) Interpolate the monthly cost for 35 minutes of long distance calling.
b) Extrapolate the monthly cost for 60 minutes of long distance calls.
c) Approximately how many minutes of long distance calls could you make for \$50 a month?
d) Write an equation to represent the graph and use to check your answers to $\mathrm{a}, \mathrm{b} \& \mathrm{c}$.
e) Could the points be connected in this graph? What assumptions are you making?


Minutes

### 6.2 Review

1. The temperature in degrees Celsius (T) in Port Coquitlam, on July 1, 2010 could be approximated by $T=-1.2 h+25$, where $h$ is the number of hours since 6 pm .
a) The temperature at $4 \mathrm{pm}, 8 \mathrm{pm}$ are shown in the chart, calculate the temperature at 10 pm and plot it on the graph.
b) Why does it make sense to join the points with a line?

| Time | h | Temp |
| :---: | :---: | :---: |
| 4 pm | -2 | 27.4 |
| 6 pm | 0 | 25 |
| 8 pm | +2 | 22.6 |
| 10 pm |  |  |

c) Use the graph to estimate the temperature at 3 pm .

d) Would it make sense to use the graph to estimate the temperature at 9 am?
2.

When Bill walks at the speed of $3 \mathrm{~km} / \mathrm{h}$, the equation for the distance he travels is: $d=3 t$ where $d$ is the distance in kilometres and $t$ is the time in hours spent walking.
a) Create a table of values for the distance he walks in 1 hour, 2 hours, 3 hours and 6 hours. Use it to graph this relation.
b) Does it make sense to connect the points with a line?
c) Extrapolate using the graph to determine the distance that Bill can walk in 7 hours. Check your answer using the equation.
d) Interpolate using the graph to determine the distance that Bill can walk in 5 hours. Check your answer using the equation.
e) How many hours does it take to walk 24 km ?
f) Why don't we have any negative values for $x$ and $y$ on this graph? Give an example of a graph where it would be appropriate to have negative values.


