6.2 Interpreting Graphs

Prescribed Learning Outcomes (PLO'S):

- Extend a given graph (extrapolate) to determine the value of an unknown element
- Interpolate the approximate value of one variable on a given graph given the value of the other variable
- Extrapolate the approximate value of one variable from a given graph given the value of the other variable
- Solve a given problem by graphing a linear relation and analysing the graph

Terminology

Dependent Variable: graphed on the vertical axis; e.g. cost **Independent Variable:** graphed on the horizontal axis; e.g. time,

Interpolate: estimate a value between two given values **Extrapolate:** estimate a value beyond a given set of values

Slope: describes the steepness of a line

y-intercept: Where the graph crosses the y-axis. The x-coordinate is zero

Example 1: Joseph is considering two different payment plans for his gym membership. Plan A charges a flat fee of \$45.00 each month. Plan B charges a flat fee of \$25.00 each month plus \$2.50 per visit.

- a) Make a table for each plan to show the monthly cost for 1,
 2, 3 & 4 visits per month. Use C to represent cost and n to represent the number of visits.
- b) Write a linear relation to represent the cost per month of each plan.
- c) Graph the two linear relations.
- d) Does it make sense to connect the points on the graphs?
 Explain.
- e) Use the graph to help you identify the number of visits required for the two plans to have the same cost.
- f) If Joseph planned to visit the gym 10 times per month, which plan would cost less? How much less would it cost him?

Example 2: The graph below represents Sally's daily Profit at her pie shop. The horizontal axis represents the number of pies sold and the vertical axis represents the Profit in dollars.

- a) How many pies must Sally sell in one day to break even?
- b) If Sally has made a profit of \$15, how many pies has she sold?
- c) How much profit does Sally make on each pie?
- d) What does the y-intercept of -30 mean?
- e) Write a linear equation to represent the graph.
- e) If Sally sells 50 pies in one day, what will the profit be?
- f) Could the points be connected in this graph? What assumptions are you making?

Example 3: A cell phone company charges a \$33.95 monthly fee and long distance charges at a rate of \$0.35 per minute. The graph shows the monthly cost of cell phone calls based on the number of long distance minutes.

- a) Interpolate the monthly cost for 35 minutes of long distance calling.
- b) Extrapolate the monthly cost for 60 minutes of long distance calls.
- c) Approximately how many minutes of long distance calls could you make for \$50 a month?
- d) Write an equation to represent the graph and use to check your answers to a, b & c.
- e) Could the points be connected in this graph? What assumptions are you making?

6.2 Review

- 1. The temperature in degrees Celsius (T) in Port Coquitlam, on July 1, 2010 could be approximated by T = -1.2h + 25, where h is the number of hours since 6 pm.
- a) The temperature at 4 pm, 8 pm are shown in the chart, calculate the temperature at 10 pm and plot it on the graph.
- b) Why does it make sense to join the points with a line?

Time	h	Temp
4 pm	-2	27.4
6 pm	0	25
8 pm	+2	22.6
10 pm		

- c) Use the graph to estimate the temperature at 3 pm.
- d) Would it make sense to use the graph to estimate the temperature at 9 am?

- 2. When Bill walks at the speed of 3km/h, the equation for the distance he travels is: d = 3t where d is the **distance** in kilometres and t is the time in **hours** spent walking.
 - a) Create a table of values for the distance he walks in 1 hour, 2 hours, 3 hours and 6 hours. Use it to graph this relation.
 - b) Does it make sense to connect the points with a line?
 - c) Extrapolate using the graph to determine the distance that Bill can walk in 7 hours. Check your answer using the equation.
 - d) Interpolate using the graph to determine the distance that Bill can walk in 5 hours. Check your answer using the equation.
 - e) How many hours does it take to walk 24 km?
 - f) Why don't we have any negative values for x and y on this graph? Give an example of a graph where it would be appropriate to have negative values.

