6.1 Representing Patterns

If the following pattern of figures continues, draw the next two figures

Figure 1

Figure 2

Figure 3

How many squares are in each figure?

How many squares do we add each time? \qquad

Terminology

Linear patterns: a sequence of numbers in which the pattern only involves addition or subtraction.
Common Difference d : is the difference between any two consecutive numbers in a linear pattern.
What is the common difference of the sequence above?

Example 1: Predict the next number in the pattern 1, 4, 7, 10, \ldots ?

Predict the $100^{\text {th }}$ number in the pattern? \qquad

Example 2: Determine the common difference of the following linear patterns and use it to find the next 3 numbers.
a) $5,8,11,14, \ldots . \quad \mathrm{D}=$
b) $-5,1,7,13, \ldots . \mathrm{D}=$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
c) $10,5,0,-5, \ldots . \mathrm{D}=$ \qquad
d) $-5,-9,-13,-17, \ldots$
$\mathrm{D}=$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is a method for finding the common difference if you know two terms of a sequence?

Example 3: Find the common difference, then write an equation relating C to n. (Verify it works for every pair of values)

a) | n | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| C | 5 | 8 | 11 | 14 |

c) | n | 1 | 2 | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: |
| C | -5 | -11 | -17 | -23 |

$\mathrm{d}=$ \qquad
$C=$ \qquad
$\mathrm{d}=$ \qquad

$$
C=
$$

\qquad

Example 4: Write an equation then use it to determine the $30^{\text {th }}$ number in the following linear pattern. $-8,-3,2,7 \ldots$

Go back and verify your answer to Example 1 using a formula.
Example 5: If the following pattern of figures continues, determine the number of squares in the $15^{\text {th }}$ figure?
a)

Figure 1

Figure 2

Figure 3
b)

Fig 1 Fig 2

Fig 3

Fig 4

Example 6: A banquet table seats 8 people, three on each side and one on each end as shown in the diagram. Tables can be connected end to end.
a) How many additional people can be seated when a table is added?
b) Make a table to show how many people can sit at 1, 2, $3 \& 4$ tables.
c) Find a pattern and write an equation. Use n for the number of tables and P for the number of people.
d) Use your equation to determine how many people can be seated at 10 tables.
e) How many tables are needed to seat 344 people?

