
Mathematics 9 Linear Relations

6.1 Representing Patterns

If the following pattern of figures continues, draw the next two figures

How many squares are in each figure?

How many squares do we add each time?

Terminology

Linear patterns: a sequence of numbers in which the pattern only involves addition or subtraction.

Common Difference d: is the difference between any two consecutive numbers in a linear pattern.

What is the common difference of the sequence above?

Example 1: Predict the next number in the pattern 1, 4, 7, 10, ...?

Predict the 100th number in the pattern?

Example 2: Determine the common difference of the following linear patterns and use it to find the next 3 numbers.

a) 5, 8, 11, 14, D = ____

b) -5, 1, 7, 13, D = ____

_____, _____, _____

______, ______, ______

c) 10, 5, 0, -5, D= ____

d) -5, -9, -13, -17,... D = ____

_____, ______, ______

,

What is a method for finding the common difference if you know two terms of a sequence?

Mathematics 9 Linear Relations

Example 3: Find the common difference, then write an equation relating C to n. (Verify it works for every pair of values)

a)
$$\frac{n \mid 1 \mid 2 \mid 3 \mid 4}{C \mid 5 \mid 8 \mid 11 \mid 14}$$

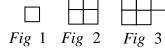
c)
$$\frac{n}{C} \begin{vmatrix} 1 & 2 & 3 & 4 \\ -5 & -11 & -17 & -23 \end{vmatrix}$$

Example 4: Write an equation then use it to determine the 30th number in the following linear pattern.

Go back and verify your answer to **Example 1** using a formula.

Example 5: If the following pattern of figures continues, determine the number of squares in the 15th

figure?


Figure 1

Mathematics 9 Linear Relations

Example 6: A banquet table seats 8 people, three on each side and one on each end as shown in the diagram. Tables can be connected end to end.

- a) How many additional people can be seated when a table is added?
- b) Make a table to show how many people can sit at 1, 2, 3 & 4 tables.

- c) Find a pattern and write an equation. Use *n* for the number of tables and *P* for the number of people.
- d) Use your equation to determine how many people can be seated at 10 tables.
- e) How many tables are needed to seat 344 people?

Practice Text p. 216 # 1-13