Solving Exponential and Logarithmic Equations
NO CALCULATORS ALLOWED!

1. Solve for x : $\log _{2}\left[\log _{x}\left(\log _{3} 9\right)\right]=-1$

$$
\begin{array}{cc}
\log _{2}\left[\log _{x} 2\right]=-1 & x^{\frac{1}{2}}=2 \\
2^{-1}=\log _{x} 2 & x=4 \\
\frac{1}{2}=\log _{x} 2 &
\end{array}
$$

2. Solve for $x: \log _{2} 8-\log _{3} 3=x$.

$$
\begin{aligned}
& 3-1=x \\
& 2=x
\end{aligned}
$$

3. Solve for x : $\log _{5} 16-2 \log _{5} x=\log _{5} 4$.

$$
\begin{array}{rlrl}
\frac{16}{x^{2}} & =4 & x=+2 \text { or } x & =-2 \\
& & p \\
4 & =x^{2} & & \text { reject } \\
& & x>0
\end{array}
$$

4. Solve for $x: \quad 3\left(2^{x}\right)=6^{x-2}$

$$
\begin{array}{rlrl}
\text { or } x: 3\left(2^{x}\right)=6^{x-2} & =(x-2) \log 6 & x=\frac{\log 3+2 \log 6}{\log 6-\log 2} \\
\begin{aligned}
\log 3+x \log 2 & =x \log 6-2 \log 6 \\
\log 3+x \log 6 & =x(\log 6-\log 2)
\end{aligned} & x=\frac{\log 108}{\log 3}=\log _{3} \log \\
\log ^{2}
\end{array}
$$

5.. Solve for x : $\quad 2 \log (3-x)=\log 4+\log (6-x)$

$$
x<3
$$

6. Solve for x : $\log (x+4)=1-\log 2 x$

$$
\begin{gathered}
\log (x+4)+\log 2 x=1 \\
\log (x+4)(2 x)=1
\end{gathered}
$$

$$
x>0
$$

$$
\begin{aligned}
& \log (3-x)^{2}-\log (6-x)=\log 4 \\
& \log \frac{(3-x)^{2}}{6-x}=\log 4 \\
& 9-6 x+x^{2}=4(6-x) \\
& x^{2}-6 x+9=24-4 x \\
& x^{2}-2 x-15=0 \\
& (x-5)(x+3)=0 \\
& x=5 x x=-3 \\
& \text { ? } x \\
& \text { reject } x<3
\end{aligned}
$$

$$
\begin{array}{ll}
10^{\prime}=2 x^{2}+8 x & \text { reject } \\
0=2\left(x^{2}+4 x-5\right) & x>0
\end{array}
$$

7. Solve for $x:\left(\log _{4} a\right)\left(\log _{a} 2 a\right)\left(\log _{2 a} x\right)=\log _{a} a^{3}$

$$
\begin{gathered}
x>0 \quad \frac{\log a}{\log _{4} 4} \frac{\log 2 a}{\log a} \frac{\log x}{\log 2 a}=3 \quad y^{3}=x \\
\log _{4} x=3
\end{gathered} \quad 64=x
$$

8. Solve for $x: 8^{x+2}=\left(4^{4 x-3}\right)\left(\frac{1}{2}\right)^{5}$

$$
\begin{array}{lr}
x^{x: 8^{x+2}=\left(4^{4 x-3}\right)\left(\frac{1}{2}\right)^{3}} \\
\left(2^{3}\right)^{x+2}=\left(2^{2}\right)^{4 x-3}\left(2^{-5}\right) & 3 x+6=8 x-11 \\
2^{3 x+6}=2^{8 x-6} \cdot 2^{-5} & 17=5 x \\
2^{3 x+6}=2^{8 x-11} & \frac{17}{5}=x
\end{array}
$$

9. Solve for $x: a^{3} b^{x-2}=c$

$$
\begin{aligned}
& \log _{b}\left(\frac{c}{a^{3}}\right)=x-2 \\
& \log _{b}\left(\frac{c}{a^{3}}\right)+2=x \\
\text { or } & \log _{b} c-3 \log _{b} a+2=x
\end{aligned}
$$

$$
b^{x-2}=\frac{c}{a^{3}} \quad \log _{b}\left(\frac{c}{a^{3}}\right)+2=x
$$

10. Solve for $x: 9^{x+2}+3^{2 x+4}+81^{0.5 x+1}=\left(\frac{1}{2 x+2}\right)^{2-x}$

$$
\begin{array}{lr}
\text { for } x:=9^{9 x+2}+3^{2 x+4}+81^{0.5 x+1}=\left(\frac{1}{2}\right)^{2-x} & \left(3^{-3}\right)^{2-x}
\end{array} \begin{array}{ll}
\left(3^{2}\right)^{x+2}+3^{2 x+4}+\left(3^{4}\right)^{0.5 x+1} & y=3^{2 x+4} \\
3^{2 x+4}+3^{2 x+4}+3^{2 x+4}=3^{3 x-6} & y+y+y=3^{3 x-6} \\
3^{1} \cdot 3^{2 x+4}=3^{3 x-6} & 3 y=3^{3 x-6} \\
3^{2 x+5}=3^{3 x-6} & 3^{\prime}\left(3^{2 x+4}\right)=3^{3 x-6} \\
2 x+5=3 x-6 & 3^{2 x+5}=3^{3 x-6}
\end{array}
$$

11. Solve for $x: \log _{2}\left(\log _{4}\left(\log _{5} x\right)\right)=-1$

$$
\begin{aligned}
2^{-1} & =\log _{4}\left(\log _{5} x\right) \\
\frac{1}{2} & =\log _{4}\left(\log _{5} x\right) \\
4^{\frac{1}{2}} & =\log _{5} x \\
2 & =\log _{5} x \\
c^{2} & =x
\end{aligned}
$$

-3	3	$5^{2}=x$
$x<3$	$x>-3$	25

12. Solve for $x: \log (3-x)+\log (3+x)=\log 5$

$$
\begin{aligned}
&-3<x<3 \\
& \log (3-x)(3+x)=\log 5 \\
& 9-x^{2}=5 \\
& 4=x^{2}
\end{aligned}
$$

13. Solve for $x: a^{5 x}=\left(\log _{c} c^{a}\right)^{3 x+8}$

$$
\begin{gathered}
a^{5 x}=a^{3 x+8} \quad x=4 \\
5 x=3 x+8 \\
2 x=8
\end{gathered}
$$

14. Solve for x in terms of b, given $\log _{27}(81 x)=b$.

$$
27^{b}=81 x \quad \frac{3^{4}}{3^{4}}=\cdots
$$

$$
3^{3 b-4}=x
$$

15. Solve for x in terms of b, given $x^{1.25}=2 b$.

$$
\begin{aligned}
& x^{\frac{5}{4}}=2 b \quad x=(2 b)^{1.25}=2 b \\
& x^{\frac{4}{5}}
\end{aligned}
$$

16. If $\log _{x} 3=a$ and $\log _{x} 25=b$, determine an expression for $\log _{x} \frac{9}{5}$.

$$
\begin{aligned}
& \log _{x} 9-\log _{x} 5 \\
& \log _{x} 3^{2}-\log _{x} 25^{\frac{1}{2}} \\
& 2 \log _{x} 3-\frac{1}{2} \log _{x} 25 \\
& 2 a-\frac{1}{2} b
\end{aligned}
$$

An expression equivalent to $\left(a^{\log _{b} c}\right)\left(a^{\log _{b} c}\right)$ is
A. $a^{2}+a^{\log _{b} c}$
B. $\left(a^{2}\right)^{\log _{b} c}$

$$
a^{\log _{b} c+\log _{b} c}
$$

C. $2 a^{\log _{b} c}$
D. $2^{\log _{c} a^{b}}$

$$
\begin{aligned}
& a^{\log _{b} c^{2}} \\
& a^{2 \log _{b} c} \\
& \left(a^{2}\right)^{\log _{b} c}
\end{aligned}
$$

Log Functions Page 3

