Protein Synthesis

1. Describe the process of transcription: unwinding, complimentary base pairing, separating

Transcription occurs when mRNA enters the nucleus through nuclear pores and arrives at the point of the DNA molecule it needs to replicate. From this point, RNA polymerase helps by unwinding the DNA molecule in the area where mRNA needs it. The mRNA molecule then finds the opposite side of the nucleotides it wants to copy (the nonsense side), and uses its complimentary base pairs adenine, guanine, cytosine, and uracil to replicate the opposite strand. The mRNA will then leave the nucleus through a nuclear pore and the DNA molecule will be zipped back up and rewinded.

2. How did today’s activity do a good job of modelling the process of transcription? In what ways was our model inaccurate?

in this activity we had to create the RNA strand ourselves which puts into perspective how set in stone the process is and how impressively fast it must take place. Obviously the DNA and RNA molecules would not look like how they do in this activity because they are 3D structures that are molecularly sized, but for the most part, this was very helpful and accurate on how mRNA would be produced.

3. Describe the process of translation: initiation, elongation, and termination.

Initiation occurs when the ribosome that is reading the mRNA molecule finds the start codon and begins reading the following codons. elongation is the process in which tRNA molecules carry amino acids and anti codons to ribosomes to build a string of amino acids to build a protein. Termination occurs when the ribosome reads a stop codon and released the mRNA, amino acid chain/protein, and any tRNA molecules attached.

4. How did today’s activity do a good job of modelling the process of translation? In what ways was our model inaccurate?

This activity really helped to give a visual on how the process takes place and how it would occur in our cells, it showed how many things had to happen at once and once again how particular the whole thing is. However, like the DNA and RNA portion of this activity, the molecules involved in this portion are also 3D and can’t really represent a perfectly accurate design on paper.

Rube Goldberg Machine – Science H 10

 

Steps:

A: Speakers emit sound, vibrating the ball off of it.

B: Ball falls down board and through funnel.

C: Elastic spring is pushed by the ball, and launches a toy car down a track.

D: Car knocks over dominos.

E: Domino hits chopstick to release a ball. The ball rolls down the track and hits another chopstick releasing another ball, and then hits another chopstick releasing another ball.

F: Last ball knocks over tower holding ball from rolling, then the ball is released and falls down hill.

G: Ball hits dominos and dominos hit box of cards.

H: Box hits chopstick and pushes up against a tape measure. Tape measure releases and launches back up to the body of the tape measure.

I: Tape measure falls hitting toilet paper roll into garbage.

Forms of Energy:

When radio waves and micro waves are given off of the phone, radiant energy is used. Electrical energy is used to produce sound in the speaker. Sound energy is emitted by the speaker. The ball is at an elevated point and therefor has gravitational energy. The ball rolls down the board using mechanical energy. The HotWheels track has a stretched elastic with elastic energy that slingshots the toy car forward. Mechanical, gravitational, and elastic energy are used throughout the rest of the machine.

Energy Transformations:

Radio waves and micro waves are given off by the phone to the speaker (radiation), the speaker uses electricity to produce the sound. The sound vibrates the ball and pushes it off. The ball falls from a height using gravitational energy and then rolls down the board with mechanical energy. The ball hits the button on the car track, and this releases an elastic which uses elastic energy to push the car into mechanical energy. Mechanical energy is continued to be used until it reaches step E, which uses mechanical and gravitational energy interchangeably.

Loader Loading...
EAD Logo Taking too long?

Reload Reload document
| Open Open in new tab

Download

Week 15 – Math 10

We learned more about graphing and linear equation. W learned about different ways to find solutions to equations. They are Inspection, Substitution, and Elimination.

Inspection is only used when a system is very easy and understood. It is basically just eyeballing the question and guessing what the solution is. You can test your solution by plugging the numbers in the appropriate spots (x and y).

Substitution is another method to find solutions, but it uses algebra. You can choose one of the equations, and then choose on of the variables to isolate. Then you plug it into the correct spot on the other equation. You then use algebra to solve the equation, and then use the answer to plug in to find the other variable.

ex.

Elimination is used when there are no coefficients of 1. You start by adding the two equations together (you can subtract but it doesn’t work as well). You want to make a zero pair by making either the x or y cancel the other out. If they don’t do this from the start, you can multiply one of the equations or both of them to get one, and then do your adding. Once you have the answer to one variable, you plug it into the equations and find the other.

ex.

Week 13 – Math 10

This week we further continued unit 7/8 by learning about point-slope form and general form. Both of which are put into a different form than slope formula. Point slope form is useful for doing quick algebra, and general form has no fractions and other “imperfections”.

Point-slope form looks like the following: m(x - x_2) = y - y_2

m is the slope. x is not connected to a point, but x_2 is. The same goes for y and y_2. You can take an equation or “hints” to make a point-slope formula.

ex.

To further turn this into slope formula and make it easier to understand, you use algebra and steps.

continuing with ex.

 

General form is the “pretty useless” form, pretty, but useless. It contains no fractions or decimals, but doesn’t tell you about the graph itself. The equation usually looks something like ax ± ny ± b = 0. the x is always first, y is always second, x is always positive, and everything is always on one side equalling zero.

You can change all forms/formulas into general form.

ex.

  1. slope formula.
  2. Point-slope form.
  3. slope formula with fractions.

General form uses no fractions and follows several rules as listed in the paragraph above. It is used to take away fractions and “imperfect” parts of a formula, but it doesn’t tell you anything until it is changed into another form.

Science is Magic – The Black Snake

 

 

Lab Report:

We researched several different chemical reactions, but eventually settled on The Black Snake. We looked at the components to make sure it wasn’t dangerous, or at least not too dangerous. The Black Snake uses powdered sugar and sodium bicarbonate (baking soda) along with rubbing alcohol. These chemicals aren’t inherently bad, but alcohol fumes can be dangerous. Another danger is when lighting it on fire to commence the reaction, because fire can obviously be dangerous.

To make The Black Snake, you take 4 parts baking soda, and 1 part powdered sugar, and mix it together. Make a vessel out of preferably tinfoil filled with sand. Make a divot in the sand, and pour the mixture into it. Put rubbing alcohol around the edges of the mixture, and a little bit throughout the middle. Use a barbecue lighter to begin the reaction. A snake made of what looks like ash emerges from the white powder mixture. The snake is very light and airy because of gases produced during the experiment. The snake can grow quite long, but doesn’t always.

What is happening is the sugar C12H22O11 combusts and turns into carbon dioxide and water vapour, this decomposition forms the snake. The baking soda is added to help the experiment rise (2NaHCO3 → Na2CO3 + H2O + CO2), just like how it is used in baking. Reactions:

Sugar combusts into water vapour and carbon dioxide: С12H22O11 + 12O2 → 12CO2 + 11H2O

Decomposition into carbon and water vapour: С12H22O11 → 12C + 11H2O

Baking soda decomposes into carbon dioxide, water vapour, and sodium carbonate: 2NaHCO3 → Na2CO3 + CO2 + H2O

The outcome should be a carbon, black snake. It should be light, look and feel like ash, and should be quite delicate. The snake is not edible, you can touch it but it is not recommended. It can be very hot after burning. Best to do in outdoors or under fume hood because of alcohol fumes produced. The snake and all components of experiment can be thrown out in a household garbage.

The experiment can seem magical because when it is growing, it looks as if it is alive and moving, like a snake. It could also possibly look like a plant growing. It’s like creating life because of its natural seeming movement, even though it is just burning, rising chemicals.

 

Bibliography:

Maric, Vladimir, and Teh Jun Yi. “How to Make a Fire Snake from Sugar & Baking Soda.” WonderHowTo, WonderHowTo, 18 Oct. 2017, food-hacks.wonderhowto.com/how-to/make-fire-snake-from-sugar-baking-soda-0164401/.

“Hooked on Science: ‘Black Snake’ Experiment.” SeMissourian.com, 3 July 2013, www.semissourian.com/story/1983035.html.

“Carbon Sugar Snake.” KiwiCo, www.kiwico.com/diy/Science-Projects-for-Kids/3/project/Carbon-Sugar-Snake/2784.

“Hooked on Science: ‘Black Snake’ Experiment.” SeMissourian.com, 3 July 2013, www.semissourian.com/story/1983035.html.

Common Names of Some Chemical Compounds, chemistry.boisestate.edu/richardbanks/inorganic/common_names.htm.

“Sugar Snake.” MEL Science, melscience.com/US-en/experiments/sugar-snake/.

Experiments, Life Hacks &. “How to Make Fire Black Snake? Amazing Science Experiment.” YouTube, YouTube, 17 June 2018, www.youtube.com/watch?v=Y7snO0pA8Sk.

Week 10 – Math 10

Although I was sick for half of this week, and wasn’t able to learn fully what the rest of that class did, or at least learned less “hands on”, I was still there for the first two days, and so what we learned then is what I understand most. We learned how mapping notation can be put into the form of function notation.

Mapping notation is where you use a math “sentence” to find an output with the use of an input. (went over semi-briefly on last blog post).

ex.

ƒ    :    x              →               3x – 2

name   input       changes into         output

 

Function notation is generally the same thing, but like how functions are relations but relations aren’t always functions, functions notation is the same. Function notation is helpful when finding inputs and outputs of functions. They are written slightly differently as well.

ex.

name   ↓input            changes into      output

ƒ         (x)             =                 3x – 2

“ƒ of x”

Both are used generally the same way, to find the output using an input. It is “ƒ of x” because the ƒ is the functions name, and the relation is a function.

 

Functions & Graphs

Using the inputs and outputs from mapping and function notation, you can plot points on a graph. The input is x, and the output is y. To get the output, you put the input in the correct spot on the opposite side.

ex.

f(x) = 3x + 1  →   f(3) = 3(5) + 1

Using them, you can get coordinates. (x, y)