This week in Precalculus 11, I learned how to rationalize denominators. Rationalizing denominators is crucial when dealing with fractions containing radicals in the denominator. It helps in removing the radical from the denominator, making it much easier to work with. So here’s how we do it.
In this example we are dealing with a lone root, and we can tell that the radical in the denominator is not rational because it’s not a perfect square.
When dealing with roots we simply multiply the denominator by itself, and what we do to the bottom we do to the top so also we multiply 6 with root 6.
Then we simply divide leaving us with root 6.
Now let’s try another problem, in this example we are dealing with a binomial as the denominator.
We can rationalize it by multiplying both the top and the cotton by a conjugate of the binomial.
We put our term together.
Leaving us with root 5 + 1
And now you know how to rationalize denominator.