Ma 9 - Flashback (week 27)

1. Determine the linear equation (rule) that models the following pattern: $10,7,4, \ldots .$.

$$
\begin{array}{l|l}
x & y \\
\hline 1 & 10 \\
2 & 7 \\
3 & -3 \\
3 & 4
\end{array}
$$

$$
\begin{array}{r}
-3 x+13=y \\
-3(1)+\square=10
\end{array}
$$

2. A population of bacteria doubles every hour. If there are 12 bacteria at the start of the hour, how many bacteria are there after 3 hours? 20 hours? 2 days?

$$
\begin{array}{lc|c}
& x & y \\
\cline { 2 - 3 } & 0 & 12 \\
\text { after many } & 1 & 24 \\
\text { sours } & 2 & 48 \\
\text { hour } & 3 & 96 \\
& & 192
\end{array}
$$

\therefore after 20 hours: $12 \cdot 2^{20}$ (huge \#!)

$$
\begin{aligned}
\text { after } 2 \text { days (} 48 \text { hours!) }= & 12 \cdot 2^{48} \\
& \text { (really, }
\end{aligned}
$$

(really,
3. Jane wants to host a party at the community hall. The hall charges a flat fee of $\$ 150$ plus an huge' additional fee of $\$ 5$ per person.
a) create a table of values to show the costs for the first 10 people.
b) What equation could model this situation?
c) how much would it cost if 40 people came to the party?

x	y
1	155
2	160
3	1650
4	170
5	175
6	180
7	185
8	190
9	195
10	200

$$
5 x+150=y
$$

$\therefore 40$ people:

$$
\begin{array}{r}
5(40)+150=y \\
200+150=y
\end{array}
$$

$$
\# z 50=y
$$

$$
\frac{(27-5) \cdot 3 \div(-11)+4}{4^{2}-(9 \cdot 6)^{0}}
$$

4. Simplify: $\frac{\left(3^{3}-5\right) \cdot 3 \div(-11)+4}{4^{2}-\left(3^{2} \cdot 6\right)^{0}} \rightarrow$
 AS

$$
\frac{-6+4}{15}
$$

5. Determine the quotient:

6. Draw algebra tile model for the opposite of

7. Solve and verify: $12 \mathrm{x}-0.7=5 \mathrm{x}+3.2$

$$
\begin{aligned}
&+3.2 \times \times \times 10 \\
& 12 x-0.7=5 x^{10}+3.2 \\
& 120 x-7=50 x+32 \\
&-50 x-50 x \\
& 70 x-7=32 \\
&+7+7 \\
& \frac{70 x}{70}=\frac{39}{70} \quad x=\frac{70}{39}
\end{aligned}
$$

8. Mandy wants to wallpaper all four walls in her room. The dimensions of the floor are 5.2 m by 3.1 m . The walls are 2.5 m high. There is one window that is 1.5 m by 1.5 m . The closet and bedroom doors are both are 2.2 m by 0.75 m .
a) What is the total surface area that will be covered with wallpaper?
b) If one roll of wall paper covers $5.2 \mathrm{~m}^{2}$, how many roles should she purchase?

Area of walls

$$
\begin{gathered}
2(3.1 \cdot 2.5)+2(5.2 \cdot 2.5) \\
15.5+26 \\
41.5 \mathrm{~m}^{2}
\end{gathered}
$$

* only 4 walls wallpapered (ignore floor \& ceiling)
* walls are rectangles
* don't wallpaper ore doors or Window (so minus these)
boors Window

$$
\begin{gathered}
2(2.2 .0 .75)+(1.5)(1.5) \\
3.3+2.25 \\
5.55 \mathrm{~m}^{2}
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \text { total } 5 A=41.5-5.55 \quad \text { So if } 1 \text { roll }=5.2 \mathrm{~m}^{2} \\
&=35.95 \mathrm{~m}^{2} \quad \text { then } \quad ?=35.95 \mathrm{~m}^{2} \\
& \text { flip } \quad \begin{aligned}
\frac{1}{x} & =\frac{5.2}{35.95} \\
& x=35.95 \quad x=6.91 \text { rolls }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =6.91 \text { rolls } \\
& \therefore \text { purchase Trolls. }
\end{aligned}
$$

9. Simplify: $\frac{\left(2 x^{3} \cdot x^{5}\right)^{2}}{\left(x^{6}\right)^{4}}$
or

$$
\frac{4}{x^{8}}
$$

