Precalculus 11 - Flashback \#3

1. Determine the equation of the quadratic function that has a vertex of $(4,-2)$ and goes through the point $(-3,8)$.

$$
\begin{aligned}
& V=(4,-2) \\
& (-3,8) \\
& x y
\end{aligned}
$$

$$
\begin{aligned}
& y=a(x-p)^{2}+q \\
& 8=a(-3-4)^{2}+-2 \\
& 8=a(49)-2 \\
& 10=49 a \\
& 10=
\end{aligned} \quad \therefore \quad \therefore=\frac{10}{49}(x-4)^{2}-2
$$

$$
\frac{10}{49}=a
$$

2. Determine the discriminant and state the nature of the roots for:

$$
G_{a}^{3 x^{2}-11 x=5} 3 x^{2}-11 x-5=0
$$

$$
\begin{aligned}
& b^{2}-4 a c \\
& (-11)^{2}-4(3)(-5) \\
& 121+60 \\
& 181 \rightarrow 2 \text { real roots } \\
& \text { irrational }
\end{aligned}
$$

3. Evaluate (without a calculator) $-\left(\frac{1}{125}\right)^{-2 / 3}$

$$
\begin{aligned}
& \begin{array}{l}
-\left(\frac{1}{125}\right)^{-2 / 35} \\
-\left(\frac{1}{125}\right)^{2 / 3}
\end{array} \text { neg. exp. law } \rightarrow \text { recipoat }_{\text {base }} \\
& -\sqrt[3]{(125)^{2}} \text { fractional exp. law } \\
& \text { (write as radical } \\
& -(5)^{2} \rightarrow \text { evaluate root } \\
& -25 \rightarrow \text { square base }
\end{aligned}
$$

Precalculus 11 - Flashback \#3
4. Explain the difference between a quadratic and a linear function. linear - equation has a degree of 1
-usually has 1 root - possible to have $2 e r o$
quadratic - equation has a degree of 2 - can have 2,1 or 2 nero roots
5. Rationalize and reduce (or reduce then rationalize): $\frac{2 \sqrt{320}}{\sqrt{3}}$. Is there a difference if you rationalize or reduce first?

$$
\begin{aligned}
& \sum_{\substack{320 \\
32 \\
\lambda_{2}}}^{3} \frac{2 \sqrt{320}}{\sqrt{3}} \rightarrow \frac{2 \sqrt{16 \cdot 4 \cdot 5}}{\sqrt{3}} \rightarrow \frac{2 \cdot 4 \cdot 2 \sqrt{5}}{\sqrt{3}} \\
& { }_{16} \lambda_{2} \\
& \frac{16 \sqrt{5}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \rightarrow \frac{16 \sqrt{15}}{3}
\end{aligned}
$$

80

$$
\begin{aligned}
& x \\
& i \\
& i \\
& i
\end{aligned}
$$

6. Simplify: $\frac{-12+\sqrt{80}}{4} \rightarrow \frac{-\not 2 \pm \not 2 \sqrt{5}}{4}$

$$
\rightarrow-3 \pm \sqrt{5}
$$

7. State the transformations for the function $y=-7(x-11)^{2}-19$

$$
\begin{aligned}
& \text { oterenation } \\
& \text { perpend }
\end{aligned}
$$

down horizontal stretch translation | of 7 |
| :---: |
| $x_{1}-7$ | $\begin{array}{lll}x_{1}-x_{2} & 21 & 35\end{array}$

Precalculus 11 - Flashback \#3
8. Two numbers have a difference of 5 . Their product is a minimum. Determine the two numbers and their product.
if $x=$ first \#
then $x-5=$ second $\#$

$$
\sum_{x=0}^{x}(\underbrace{x-5}_{\quad})=\text { product }
$$

The 2 numbers are $\phi$ and 5 . The minimum is the $y$ value of the vertex.


$$
\begin{aligned}
x(x-5) & =\text { product } \\
2.5(2.5-5) & =\text { product } \\
2.5(-2.5) & =\text { product } \\
-6.25 & =\text { pron }
\end{aligned}
$$

9. Solve algebraically: $2 x^{2}-3 x \leq 9$

$$
\begin{array}{ll}
2 x^{2}-3 x-9 \leq 0 \\
(2 x+3)(x-3) \leq 0 & \\
2 x=-3 \quad x=3 & \text { So } \\
x=-3 / 2 & -3 / 2 \leq x \leq 3
\end{array}
$$

10. Simplify: $\frac{x^{2}+5 x+6}{9-x^{2}} \div \frac{x+3}{x+5}$

$$
\frac{N_{0}+e}{x+3}=3+x
$$

$$
\begin{aligned}
& \frac{(x+3)(x+2)}{(3-x)(3+x)} \div \frac{x+3}{x+5} \\
& \frac{(x+3)(x+2)}{(3-x)(3+x)(x+5)} \\
& \frac{(x+2)(x+5)}{(3-x)(x+3)}
\end{aligned}
$$

