Sum of Infinite Geometric Series

In this week’s Math 11 Pre-Cal I learned that you can actually determine the exact Sum of Infinite Geometric Series in certain situations, when they are converges.( when -1<r<1) as with a rate less than 1 and greater than -1 the next term will get closer and closer to zero, therefore there is a determinable  sum. In the case of a diverging series, the  sum will get infinity big and therefor we can’t determine the exact sum.

The equation for the sum of an regular Geometric Series is

Sn=\frac{a(1-r^n)}{1-r}

When -1<r<1 r^n approaches 0 as n increases indefinitely.

So, Sn approaches Sn= \frac{a(1-0)}{1-r}, therefor S\infty= \frac{a}{1-r}

EX:

A Infinite Geometric Series where r=0.5

8,4,2,1

S\infty= \frac{8}{1-0.5} S\infty= \frac{8}{0.5} S\infty= {16}

 

Leave a Reply

Your email address will not be published. Required fields are marked *