March 8, 2019 1:26 PM

CALORIMETRY PROBLEMS

1. Calculate the heat gained by 125.0 g of water when it is put into a calorimeter and its temperature is increased by 90.0°C. The specific heat of water is 4.18 J/g.°C. (ans. 47.0 kJ)

Q~MCST Q= (125.0g)(4.18 =) (+90.0°c) = 47 025 J=1000 = 47.0

- 2. When 5.0 g of NaOH is dissolved in 100 mL of water the temperature rises from 20.0°C to 33.2°C.
- a) Is the dissolving process endo of exothermic?
- b) Calculate how much energy is absorbed when NaOH dissolves in kJ/g of NaOH? (1.1 kJ/g)

$$Q = MCDT$$

$$= (100g)(4.185)(13.2) = 5517.6J = 5.5176KJ = 1.1KJ$$

$$= (100g)(4.185)(13.2) = 5517.6J = 5.09 \text{ NaOH}$$

3. 1.65 g of napthalene ($C_{10}H_8$) is burned in a calorimeter (assume energy absorbed by the calorimeter is negligible) containing 2000.0 g of water. The temperature of the water rose from 20.20°C to 25.85°C. Calculate the heat of released by the naphthalene (moth balls) in KJ/g. (ans. 28.6 kJ/g)

$$Q = MC\Delta T$$
= $(2000g)(4.185)5.65^{\circ}C$
= $47.2KJ = D$

$$= 47.2KJ = D$$

$$C_{10}H_{8}$$

$$= 28.6KJ$$

$$C_{10}H_{8}$$

4. A 6.22 kg piece of copper (c = $0.385 \text{ J/g} \,^{\circ}\text{C}$) is heated from $20.5 \,^{\circ}\text{C}$ to $324.3 \,^{\circ}\text{C}$. Calculate the heat absorbed by the Cu in kJ. (728 kJ).

$$0 = (6220 g)(0.385 J)(303.8°c)$$

$$727510 J = 728 KJ$$

5. How much heat (kJ) is released when 366 g of mercury (c = $0.139 \text{ J/g}\,^{\circ}\text{C}$) cools from 77.0°C to 12.0°C ?

(3.31 kl)
$$Q = 366g(0.1395)(-65°c)$$

 $Q = -33075 \div 1000 \div -3.31 \text{ KJ}$

6. A piece of copper metal (c= 0.385 J/g °C) with a mass of 6.22 kg at 20.5°C absorbs 727.5 KJ of heat energy What is the final temperature of the copper? (ans. = 324 $^{\circ}$ C) X 1000

$$Q = MC \Delta T$$
 $727500 = (6220g)(0.3855)(\Delta T)$
 J
 $303.8 \stackrel{\circ}{c} = \Delta T$
 $500 = 300$

$$303.8^{\circ} = \Delta T$$

303.8 c = \triangle 1

7. Determine the specific heat capacity of zinc from the following experiment. A 50.0 g piece of zinc is heated to 204%. The hot zinc is place in 200.0 g for the following experiment. heated to 204 °C . The hot zinc is place in 200.0 g of water (c=4.18 J/g °C) at 25.0 °C . The final temperature of the water and zinc is 29.1 °C. (ans. 0.392 J/g °C)

$$700 \text{ Mc DT}$$
 1000 Mc DT
 1000