Friday, August 31, 2018 3:55 AM

Systems of Linear Equations Lesson #4: Solving Systems of Linear Equations by Elimination

So far we have used three methods to solve systems of equations: graphing, inspection, and substitution. In this lesson we will learn another algebraic technique: the method of elimination. This method is particularly useful when the equations involve fractions.

Method of Elimination

In using the method of elimination, there are four steps which are shown below.

Consider the system of equations:

a) Add the two equations. This will eliminate the variable y.

b) Use the equation in **a**) to determine the value of x and hence solve the system.

c) Verify the solution satisfies both equations.

$$212 + 13 = 13$$

 $2(3) + 11 = 13$
 $6 + 7 = 13$

Consider the system of equations:

a) Subtract the two equations. This will eliminate the variable x.

b) Use the equation in **a**) to determine the value of y and hence solve the system.

2x+64=6 22 +6(0.5)=6 22+3

c) Verify the solution satisfies both equations.

2x+6y=6 2(1.5) + 6(0.5)= 2x+3y=4.5 2(1.5)+3(0.5)=4.5 3+1.5=4.5

Complete Assignment Questions #1 - #3

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

 $3(4x-y=22) \Rightarrow \sqrt{2x-3y} = 4$ Consider the system of equations:

- a) Does adding or subtracting the equations eliminate either of the variables?
- **b**) Multiply the second equation by 3 and then add the two equations.

2x+3y=4

Consider the system of equations: 7(5a + 3b = 3) 3(3a - 7b = 81)

- a) Choose appropriate whole numbers to multiply each equation so that the system can be solved by eliminating b.
- **b**) Solve and verify the system by eliminating b.

5a+3b=3

- c) Choose appropriate whole numbers to multiply each equation so that the system can be solved by eliminating a.
- **d**) Solve the system by eliminating a.

3(5a+3b=3) \Rightarrow 18a+9b=9 5(3a-7b=81) \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9 \Rightarrow 18a+9b=9

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement

$$4x + 2y - 13 = 0$$
,

$$3x = 5y + 26$$

Solve the following system using elimination. 4x + 2y - 13 = 0, 3x = 5y + 26 5(4x + 2y = 13) 25x + 15y = 65 4x + 2y = 13 3x - 5y = 26 2(3x - 5y = 26) + 6x + 15y = 52 4x + 2y = 13 4x + 2y = 13 $26x = \frac{117}{26}$ 4x + 2y = 13 2x + 2y = 13 2x + 2y = 13 2x + 2y = 13y=-5 or -2.5

Solve the following system using elimination.

$$\frac{x-2}{3} - \frac{y+2}{5} = 2,$$

$$\frac{x-2}{3} - \frac{y+2}{5} = 2,$$
 $\frac{3}{5}(x+1) - \frac{4}{5}(y-3) = \frac{21}{2}$

Pg.475 # (1-5)0.1.,6-8

WS optional extra practice

Complete Assignment Questions #4 - #12

Assignment

- 1. In each of the following systems:
 - solve the system using the method of elimination by adding the equations.
 - verify the solution satisfies both equations.

a)
$$8x - y = 10$$

 $4x + y = 14$

b)
$$x + 2y = 3$$

 $-x + 3y = 2$

c)
$$4a - 3b = 2$$

 $-4a - b = 6$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.