Equations of Linear Relations Lesson #1: The Equation of a Line in Slope y-intercept Form \rightarrow y = mx + b

Overview of Unit

In this unit we express the equation of a linear relation in three different forms: slope *y*-intercept form, point-slope form, and general form. We relate linear relations expressed in these forms to their graphs.

We also determine the linear relation given: a graph, a table of data points, a point and the slope, two points, a point and the equation of a parallel or perpendicular line.

Investigating the Graphs of Linear and Non-Linear Relations

a) The equations of the graphs of some relations are given. In each case, use a graphing calculator to sketch the graph of the relation and make a rough sketch of the graph on the grid provided. Do not list any *x*- or *y*-intercepts.

b) List the equations of the graphs as linear or non-linear.

LINEAR: y=3k+1 y=-2x+3 $y=\frac{1}{2}x-2$ y=4xNON-LINEAR: $y=-x^3+1$ $y=x^2-3$ $y=\frac{1}{2}$ $y=2^x$

c) Compare the lists. Write a rule from the equation which can be used to determine whether the graph is a straight line or not.

The exponent of 12 and 19 must be 1

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Linear Equation

A linear equation is an equation of the form y = mx + b, where $m, b \in R$. The graph of a linear equation is a straight line.

Investigating m and b in the equation y = mx + b

Part One

Jenine used a graphing calculator to sketch the graph Slope = $\frac{1}{100}$ of the linear equation $y = \frac{2}{3}x - 1$. Her sketch is shown on the grid.

a) Use the sketch and points A and B to find the slope and y-intercept of the graph of $y = \frac{2}{3}x - 1$. Slope = $\frac{2}{3}$ y - int = -1

b) Compare the values found in **a**) with the coefficient of x and the constant term in the

equation
$$y = 2x + 1$$
 $y = -\frac{5}{2}x - 3$ $\frac{\text{slope}}{2}$

d) Make a conjecture about the slope and y-intercept of the graph of the linear equation

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Part Two

Hashib used a graphing calculator to graph the linear equation 2y = 5x + 8. The graph is shown on the grid.

a) Use the sketch to determine the slope and y-intercept of the graph of 2y = 5x + 8.

5/ope = 5

y-rn = 4

b) Explain why, in this case, the slope is not 5 (the coefficient of x) and the y-intercept is not 8 (the constant term).

y has a coefficient of 2

ly=5x+8

Slope y-intercept Form of the Equation of a Line $\rightarrow y = mx + b$

The graph of an equation in the form y = mx + b (or a function in the form f(x) = mx + b) is a straight line with slope m and y-intercept b.

The equation y = mx + b is known as the **slope y-intercept form** of the equation of a line.

The graph of an equation in this form can be drawn without making a table of values.

Class Ex. #1

Determine the slope and y-intercept of the graph of each linear equation listed below:

a) y = 3x + 2

b) $y = 7 - \frac{2}{3}x$ c) $\frac{6y}{6} = \frac{8x+1}{6}$ Shape = $-\frac{2}{3}$ $y = \frac{14}{3}x + \frac{1}{6}$ $y = \frac{14}{3}x + \frac{1}{6}$ Shape = $\frac{14}{3}$ $y - r + \frac{1}{6}$

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Graphing an Equation of the Form y = mx + b

In this section, we will look at two ways of sketching the graph of a linear equation without using a graphing calculator or a table of values.

Consider the equation y = 2x - 5.

a) State the slope and y-intercept.

b) Mark the y-intercept on the grid.

2 / nice

c) Use the y-intercept and the formula $slope = \frac{rise}{run}$ to mark three other points on the grid.

Join the points together, and extend the line.

d) Verify the graph using a graphing calculator.

Class Ex. #3

Consider the equation $y = \frac{2}{3}x - 6$.

Where 4=0

a) State the y-intercept.

b) Determine the *x*-intercept algebraically.

 $18 = 2x \rightarrow \lambda = 9 (x-int)$

- c) Mark the x- and y-intercepts on the grid. Join the points together, and extend the line.
- **d**) Verify the graph and the intercepts using a graphing calculator.

Complete Assignment Questions #1 - #14

Copyright © by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.