Engine Cooling Systems

- During the power stroke, 2200°C or more, is generated by the burning air/fuel mixture.
- > This heat needs to be controlled so the engine is not damaged!

Purpose of the Cooling System...

Both air & liquid type cooling systems have 3 main jobs...

1) remove excess heat from engine parts

2) maintain a consistent operating temperature

3) allow the engine to reach normal operating temperature as quickly as possible

Air Cooling

not used in vehicles any longer

*

Controlling the Heat

- Hollow passages called water jackets surround the cylinders and valve chambers.
- The water jackets are filled with a 50% mixture of water and antifreeze.
- The engine coolant absorbs the excess heat from the cylinders, valves & combustion chamber area.

*

Cooling the Coolant

- Once the engine coolant reaches ≈100°C or more, it must be re-cooled so that it can continue to remove excess heat from the engine.
- The radiator and water pump work together to lower coolant temperature

\bigstar

Coolant Circulation

• The water pump pushes engine coolant out of the water jackets and into the radiator so that excess heat from the coolant can be removed.

Radiator Operation

Radiator coolant flow designs

Down-flow & Cross-flow

Air Flow

• Air flow through the radiator at low vehicle speeds, is the job of the radiator fan

2 types of fans are belt driven and electric

most belt driven fans have thermostatic clutches – these spin the fan only when the air temp thru the rad reaches a predetermined level

Consistent Operating Temperature

- normal operating temperature of the coolant for most cars and trucks is ≈100°C or ≈210°F
- to maintain an even operating temperature, a thermostat is used

Thermostat Operation

- the thermostat senses coolant temperature and controls the flow of coolant back to the radiator for re-cooling
- on a cold engine, no coolant is allowed to enter the radiator
- this allows the engine to reach normal operating temperature as quickly as possible

Coolant Circulation

- A Head cooling
- Block cooling
- 🕒 Thermostat
- Water pump
- Cooling fan
- Radiator cap
- **(6)** Overflow tank
- Radiator

- Transmission cooler
- 🕕 Heater valve
- (1) Heater core
- 🕒 Heater fan

\bigstar

Radiator Cap Operation

- as the coolant heats up and expands, a pressure valve opens & excess coolant is sent to the expansion bottle
- when the engine is turned off and the coolant begins to cool, a vacuum valve opens & allows coolant to return back to the radiator

this is called a closed cooling system.

Heating the inside of the car...

- hot engine coolant is sent to the heater core
- the heater fan blows air through the heater core to warm the interior of the car

Cooling System Troubleshooting

• overheating

overcooling

Overheating caused by... leaking radiator

use a cooling system pressure tester

Overheating caused by... leaking radiator hoses

inspect the hoses for bulges & soft/mushy sections

Overheating caused by... leaking water pump

- water pump
 - > check bleed hole,

Overheating caused by... leaking frost (core) plugs

Overheating caused by... slipping drive belts

- drive belt(s)
 - check for damage or excessive play

Overheating caused by... a stuck (in the closed position) thermostat

old thermostat can be tested in a pot of boiling water using a temperature gauge

Overheating caused by... plugged radiator tubes or fins

- check for loose or deteriorated fins
- check for blockage of the tubes

\bigstar

Testing Radiator

- to check the radiator for blockage (restricted flow), run your hand over the core
 - engine off & warmed up
- temperature should be consistent
- cold areas indicate plugged tubes

\bigstar

Overcooling

- Does the temperature read lower than normal?
 - > normal coolant operating temperature is ≈ 80°C 100°C
- Is the heat coming out of the heater not as hot as it should be?

Thermostat is stuck in the open position!

Coolant Service

The coolant should be tested for freeze point protection with an <u>antifreeze tester</u>.

The coolant should be bright green, light blue or pink in color and should not be murky/cloudy.

• Tech Tip: Some cars use long-life coolant & this type needs to be replaced every 4 to 5 years (or longer).

Replacing Coolant

- 1. Wait until the engine is cool.
- 2. Remove the radiator cap.

3. Loosen the radiator drain plug (if equipped) or remove one end of the lower radiator

hose.

- 4. Refill the radiator with a mixture of clean water and new antifreeze at 50% each.
 - ensure you are using the correct type of antifreeze for that vehicle
- 5. Start the engine and keep the radiator cap off until the engine is completely warmed up (at least 10 minutes)
 - if the engine has a bleed screw (yellow circles in diagrams) to remove trapped air, loosen it to remove trapped air, then retighten it
- 6. During this time keep the radiator full & watch the temperature gauge!!!
- 7. Reinstall the radiator cap & align any markings with the overflow tube.

8. Fill the expansion bottle to the appropriate level as well.

