RESISTANCE - connection between voltage and current

will flow if a \qquad is applied to the circuit.
$=$ electrons will move if they are \qquad .

The same voltage does NOT always produce the same current due to \qquad .

RESISTANCE

- how \qquad it is for electrons to flow through the material
- measured in a unit called \qquad (Ω) by using an \qquad .

RESISTOR

- any \qquad that decreases the flow of \qquad in a circuit.

Ex. Any kind of \qquad
Ex. Compressed carbon resistors use \qquad to indicate the resistance that they provide.

Each colour has a given number value:

Practice:

1. Blue Orange Red Silver \rightarrow
2. Yellow Yellow Orange Gold \rightarrow
3. Grey Green Yellow \rightarrow
4. White Red Red Silver \rightarrow
5. Blue Green Red \rightarrow

OHM'S LAW-
A scientist named George Ohm conducted experiments with circuits and determined that there is a relationship between voltage, current and resistance.

His work lead to the creation of \qquad .

OHM'S LAW	Symbols	Unit	

Important Points about Ohm's Law:

1. If you \qquad voltage, current will \qquad (if resistance remains constant)
2. If you \qquad resistance, current will \qquad (if voltage remains constant)

PRACTICING OHM'S LAW

1. An electrical device with a resistance of 3.0Ω will allow a current of 4.0 amps to flow through. What is the voltage across the device?
2. When a voltage of 120 V is used across an electric heater, a current of 10.0 amps will flow through the heater if the resistance is \qquad Ω.
3. A flashlight that is powered by 3 V and uses a bulb with a resistance of 60Ω will have a current of \qquad Amps.
4. Determine the missing values:

