More Force Problems

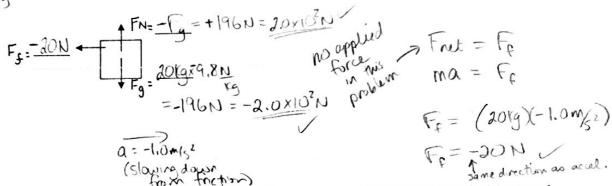
1. What force would be required to accelerate an 8.4 kg object at 2.7 m/s² with a force of friction of 4.5 N? (Answer: 27N)

$$F_{NX} = F_{QP} - F_{F}$$
 $MA = F_{QP} - 4.5N$
 $F_{QP} = 8.4 \times (2.7 \text{ m/s}) + 4.5N = 27 \text{ N}$

2. What is the mass of an object that accelerates from 15.0 m/s to 23.5 m/s over 12.0 seconds with an (Answer: 28.2kg) applied force of 32.0 N and a force of friction of 12.0 N?

$$V_{i} = 12.5 \text{ m/s}$$
 $V_{i} = 12.5 \text{ m/s}$
 $V_{i} = 12.5 \text{ m/s}$
 $V_{i} = 12.5 \text{ m/s}$

$$\alpha = \frac{125}{4}$$
 $\alpha = \frac{125}{4}$
 $\alpha = \frac{125}{4}$


$$V_{i} = 15 \text{ M/s}$$

$$V_{f} = 23.5 \text{ m/s}$$

$$V_{f} = 23.2 \text{ m/s}$$

$$V_{f} = 23.5 \text{ m/s}$$

3. A 20 kg box is sliding towards the right across the floor with an acceleration of -1.0 m/s². Calculate and fill in all (Answer: $F_N = 2.0 \times 10^2 N$; $F_g = -2.0 \times 10^2 N$; $F_f = -20 N$) the blanks in the force diagram.

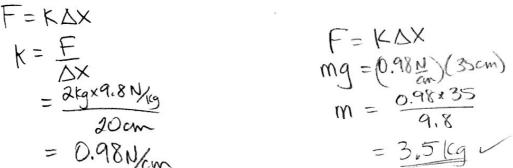
4. What force would be required to accelerate a 5.0 kg mass from rest to a speed of 2.5 m/s, if the time of acceleration was only 0.30 s and a coefficient of friction of 0.40? Vi = 0

5. A smooth wooden block is placed on a smooth wooden tabletop. You find that you must exert a force of 14.0N to keep the 40.0N block moving at a constant velocity.

a. What is the coefficient of sliding friction for the block and the table? (Answer: 0.350)

$$F_{\text{not}} = F_{\text{not}} - F_{\text{f}}$$

$$0 = 14N - \mu(40N)$$


$$\mu = \frac{-14}{-40} = 0.350$$

 $\mu = \frac{-14}{40} = 0.350$ b. If a 20.0N brick is placed on the block, what force will be required to keep the block and brick (Answer: 21.0N) moving at a constant velocity?

$$F_{\text{net}} = F_{\text{app}} - F_{\text{f}}$$

$$O = F_{\text{app}} - (0.350)(60N)$$

$$F_{\text{app}} = 21.0N$$

7. What is the force of friction acting on a 5.0 kg object that accelerates from an initial velocity of 2.0 m/s to a velocity of 8.45 m/s in 10.5 sec. The applied force acting on the object is 24.0 N. (Answer: -21N)

Frut =
$$F_{app} - F_{f}$$

Ma = $F_{app} - F_{f}$
 $V_{i} = 2 m_{i}$
 $V_{i} = 2 m_{i}$
 $V_{i} = 8 m_{i}$

(Answer: 3.5kg)

8. Calculate the force of gravity between the Earth and a 70 kg satellite that is 4.56×10^5 m above the Earth's surface. Earth's radius = 6.38×10^6 m. Mass = 5.98×10^{24} (Answer: 6.0×10^2 N)

$$F_{g} = \frac{GMm}{F^{2}} = \frac{(6.67 \times 10^{-11} \text{ Nm}^{2})}{(6.38 \times 10^{6} \text{m} + 4.56 \times 10^{5} \text{m})^{2}}$$

$$= 597.48 \text{N} \longrightarrow \frac{6.0 \times 10^{2} \text{N}}{2}$$

9. What is the applied force acting on a 2.65 kg object that accelerates from rest to a velocity of 4.5 m/s in 2.5 seconds. The force of friction acting on the object is 4.35 N. (Answer: 9.1N)

$$F_{NL} = F_{app} - F_{f}$$
 $Ma = F_{app} - 4.35N$
 $V_{i} = 0$
 $V_{f} = 4.5m/s$
 $V_{f} = 2.55 = 1.8m/s^{2}$
 $V_{f} = 4.5m/s$
 $V_{f} = 2.55 = 1.8m/s^{2}$
 $V_{f} = 0$
 V

10. A 52N sled is pulled across a cement sidewalk at a constant speed. A horizontal force of 36N is exerted.

a. What is the coefficient of sliding friction between the sidewalk and the metal runners of the sled? Fret =
$$\frac{1}{4}$$
 = $\frac{1}{4}$ = $\frac{$

b. Suppose the sled runs on packed snow. The coefficient of friction is now only 0.12. If a person weighing 650N sits on the sled, what force is needed to slide the sled across the snow at a constant speed?

(Answer: 84N)