Math Review Questions

Rational numbers:

- Compare and order rational numbers. Order from least to greatest:
$1.2,-7, \frac{17}{1000}, \frac{-76}{1000}$
- Identify a rational number between two given rational numbers.

Find a number between $\frac{6}{14}$ and $\frac{7}{14}$

- Perform operations on rational numbers in decimal form without a calculator.

Evaluate $0.6 \div-0.2+0.5 \times 0.3^{2}$

- Solve problems involving rational numbers in fraction form.

Evaluate $\frac{1}{7}+\frac{17}{21} \times\left(\frac{6}{7}\right)^{3}$

- Determine the square root of a perfect square rational number without a calculator. Find $\sqrt{256}$
- Determine an approximate square root of a non-perfect square rational number without a calculator.
Find $\sqrt{90}$

Exponents:

- Represent repeated multiplication with exponents What is $5 \times 5 \times 5 \times 5 \times 5 \times 5$ as an exponent?
- Describe how powers represent repeated multiplication How does 3^{4} represent $3 \times 3 \times 3 \times 3$?
- Demonstrate the difference between the exponent and the base by building models of a given power, such as 2^{3} and 3^{2} What shape could 2^{3} represent? What shape could 3^{2} represent? How so?
- Demonstrate the difference between two given powers in which the exponent and base are interchanged by using repeated multiplication, such as 2^{3} and 3^{2}. Show 3^{4} and 4^{3} with repeated multiplication. Explain how they are different.
- Explain the role of parentheses in powers by evaluating a give set of powers such as $(-2)^{4},\left(-2^{4}\right)$ and -2^{4}.
What is the difference between $(-3)^{2},\left(-3^{2}\right)$ and -3^{2} ?
- Evaluate powers with integral bases (excluding base 0) and whole number exponents. Find 8^{6}
- Explain the exponent laws for multiplying and dividing powers with the same base. Simplify $3^{2} \times 3^{5}$ and $2^{11} \div 2^{6}$. What are the exponent laws?
- Explain the exponent law for raising a power to an exponent. Simplify $\left(4^{3}\right)^{2}$. What is the exponent law?
- Explain the exponent law for powers with an exponent of zero. $2^{0}=1$. Why is this?
- Use patterns to show that a power with an exponent of zero is equal to one. Use a pattern to show that $3^{0}=1$.
- Identify the error in a simplification of an expression involving powers.

What is wrong with $4^{3}-8 \div 2+3^{2}=17$

- Apply the laws of exponents.

Evaluate $12 \times 5^{3}-64 \div 4^{2}$

- The order of operations on expressions with powers.

Evaluate $9+(-2)^{3}-2(-6)^{2}$

- Determine the sum and difference of two powers.

Evaluate $6^{3}-2^{4}$ and $6^{3}+2^{4}$

- Identify the error in applying the order of operations in an incorrect solution.

What is wrong with $2+15 \times 3^{2}+2\left(2^{2}\right)=620$

- Use powers to solve problems.

Find the surface area and volume of a cube with a side length of 9 cm

- Solve problems by applying the order of operations.

Evaluate $24-2^{2} \times 3+\left(7^{2}-5^{2}\right)$

Polynomials:

- Use mathematical terminology (variables, degree, number of terms, coefficients, constant terms) to describe polynomials. Too find the \qquad of a polynomial you take the \qquad exponent
- Identify different types of polynomials (monomial, binomial, trinomial). Show a monomial, binomial and trinomial
- Create a model for a given polynomial expression.

Create a model for $2 x^{2}-3 x+6$

- Write the expression for a given model of a polynomial.

Write an expression for \square
\square

- Write a polynomial expression for a given situation.

In Langley you can rent a backhoe for $\$ 399$ per day and a bulldozer for $\$ 550$ per day. It costs $\$ 160$ round trip to move each piece of equipment back and forth to the job site. Write an expression for the total cost of renting both the backhoe and bulldozer for 5 days.

- Use algebra tiles to show whether expressions are equivalent Are $-3 x^{2}-4 x-2$ and \square
\square
\square
\square
\square

Math Review Questions WITH ANSWERS

Rational numbers:

- Compare and order rational numbers.

Order from least to greatest:
$1.2,-7, \frac{17}{1000}, \frac{-76}{1000}$
$-7, \frac{-76}{1000}, \frac{17}{1000}, 1.2$

- Identify a rational number between two given rational numbers.

Find a number between $\frac{6}{14}$ and $\frac{7}{14}$
A number between would be $\frac{13}{28}$

- Perform operations on rational numbers in decimal form without a calculator.

Evaluate $0.6 \div-0.2+0.5 \times 0.3^{2}$
$-3+0.45$
-2.55

- Solve problems involving rational numbers in fraction form.

Evaluate $\frac{1}{3}+\frac{17}{21} \times\left(\frac{6}{7}\right)^{3}$
$\left(\frac{6}{7}\right)^{3}=\frac{216}{343}$
$\frac{1}{7}+\frac{17}{21} \times \frac{216}{343}$
$\frac{1}{7}+\frac{17}{7} \times \frac{72}{343}$
$\frac{1}{7}+\frac{1224}{2401}=\frac{1567}{2401}$

- Determine the square root of a perfect square rational number without a calculator.

Find $\sqrt{256}$
The square root of 256 is 16

- Determine an approximate square root of a non-perfect square rational number without a calculator.
Find $\sqrt{90}$
Between 9 and 10, 9.5

Exponents:

- Represent repeated multiplication with exponents

What is $5 \times 5 \times 5 \times 5 \times 5 \times 5$ as an exponent?
5^{6}

- Describe how powers represent repeated multiplication

How does 3^{4} represent $3 \times 3 \times 3 \times 3$?
It shows 3 multiplying itself 4 times

- Demonstrate the difference between the exponent and the base by building models of a given power, such as 2^{3} and 3^{2}
What shape could 2^{3} represent? What shape could 3^{2} represent?
2^{3} represents a cube, and 3^{2} represents the surface area of a square
- Demonstrate the difference between two given powers in which the exponent and base are interchanged by using repeated multiplication, such as 2^{3} and 3^{2}.
Show 3^{4} and 4^{3} with repeated multiplication. Explain how they are different.
$3 \times 3 \times 3 \times 3$ and $4 \times 4 \times 4.3^{4}$ is 3 multiplying itself 4 times. 4^{3} is 4 multiplying itself 3 times.
- Explain the role of parentheses in powers by evaluating a give set of powers such as $(-2)^{4},\left(-2^{4}\right)$ and -2^{4}.
What is the difference between $(-3)^{2},\left(-3^{2}\right)$ and -3^{2} ?
$(-3)^{2}=(-3)(-3)=-27$
$\left(-3^{2}\right)$ and $-3^{2}=-1 \times 3 \times 3=-9$
- Evaluate powers with integral bases (excluding base 0) and whole number exponents.

Find 4^{6}
16777216

- Explain the exponent laws for multiplying and dividing powers with the same base. Simplify $3^{2} \times 3^{5}$ and $2^{11} \div 2^{6}$. What are the exponent laws?
3^{7} and 2^{5}. When multiplying powers with the same base you add the exponents. When dividing powers with the same base you subtract the exponents
- Explain the exponent law for raising a power to an exponent.

Simplify $\left(4^{3}\right)^{2}$. What is the exponent law?
4^{6}. When multiplying a power with another exponent, multiply the exponents

- Explain the exponent law for powers with an exponent of zero.
$2^{0}=1$. Why is this?
$2 \div 2=1$. If a number has an exponent of 0 , the value will always be 1 as long as the base is not 0 .
- Use patterns to show that a power with an exponent of zero is equal to one. Use a pattern to show that $3^{0}=1$.

Power	Value
3^{4}	81
3^{3}	27
3^{2}	9
3^{1}	3
3^{0}	1

$81 / 3=27.27 / 3=9.9 / 3=3.3 / 3=1$.

- Identify the error in a simplification of an expression involving powers.

What is wrong with $4^{3}-8 \div 2+3^{2}=17$
They said 4^{3} is equal to 12 not 64 .

- Apply the laws of exponents.

Evaluate $12 \times 5^{3}-64 \div 4^{2}$
1496

- The order of operations on expressions with powers.

Evaluate $9+(-2)^{3}-2(-6)^{2}$
-71

- Determine the sum and difference of two powers.

Evaluate $6^{3}-2^{4}$ and $6^{3}+2^{4}$
200 and 232

- Identify the error in applying the order of operations in an incorrect solution.

What is wrong with $2+15 \times 3^{2}+2\left(2^{2}\right)=620$
They did not use the order of operations at all

- Use powers to solve problems.

Find the surface area and volume of a cube with a side length of 9 cm
$S A=81 \mathrm{~cm}^{2}$
$V=729 \mathrm{~cm}^{3}$

- Solve problems by applying the order of operations.

Evaluate $24-2^{2} \times 3+\left(7^{2}-5^{2}\right)$
36

Polynomials:

- Use mathematical terminology (variables, degree, number of terms, coefficients, constant terms) to describe polynomials.
Too find the __degree___ of a polynomial you take the ___biggest \qquad exponent
- Identify different types of polynomials (monomial, binomial, trinomial).

Show a monomial, binomial and trinomial
$3 x^{2}, 4 x+2,6 x^{2}-8 x+5$

- Create a model for a given polynomial expression.

Create a model for $-2 x^{2}-3 x-6$

- Write the expression for a given model of a polynomial.

$-3 x^{2}-2 x-4$
- Write a polynomial expression for a given situation.

In Langley you can rent a backhoe for $\$ 399$ per day and a bulldozer for $\$ 550$ per day. It
costs $\$ 160$ round trip to move each piece of equipment back and forth to the job site. Write an expression for the total cost of renting both the backhoe and bulldozer for 5 days.
$399 x+550 x+320$
$399(5)+550(5)+320$
$1995+2750+320=\$ 5065$

- Use algebra tiles to show whether expressions are equivalent Are $-3 x^{2}-4 x-2$ and $\square \square \square \square \square$
No they are not equal $-3 x^{2}-4 x-2$ would be:
No they are not equal, $-3 x^{2}-4 x-2$ would be:

