Chapter 3 - Powers and Exponents
 LESSON 6: SOLVING PROBLEMS WITH EXPONENTS (PART 1)

Using Known Formulas to Solve Problems

Powers are found in many formulas. When repeated multiplication is present in a formula, it is represented as a power. The use of powers keeps the formula as short as possible.

Many patterns that involve repeated multiplication can be modelled with expressions that contain powers. Here are a couple of known objects and formulas.

Area of a Square $A=s^{2}$

Volume of a Cube $V=s^{3}$

S

Surface Area of a Cube
$S A=6 s^{2}$
(Think: Area of a square times 6 sides)

Pythagorean Theorem - for right triangles only
$a^{2}+b^{2}=c^{2}$,
(a and $b=$ legs of the triangle, $c=$ hypotenuse)

Area of a Circle

$A=\pi r^{2}$

For all questions:

- Draw and label a diagram if none is provided.
- Write the formula you will use
- Substitute the known values in the formula and solve showing all steps
- Write a sentence answering the question and include units.

Ex.1: What is the surface area of a cube with an edge length of 3 m ?

Ex.2: Find the side length of the square attached to the hypotenuse in the diagram.

Ex.3: The diagram shows a circle inscribed in a square with a side length of 16 cm . What is the area of the shaded region? Give your answer to one decimal place.

Ex.4: In the formula, $d=4.9 t^{2}, d$ is the total distance, in metres, and t is the time, in seconds, that the skydiver free falls. Calculate the distance the skydiver falls in the following times.
a) 2 s
b) 4 s

