Chapter 5 and 7 - Polynomials

LESSON 1: THE LANGUAGE OF ALGEBRA

- Algebra: a branch of mathematics that uses symbols to represent unknown numbers or quantities
- Variable: a letter that represents an unknown number
- Coefficient: a number that multiplies the variable
- Term: a number or a variable or the product of numbers and variables
- Constant term: known value in an expression (term that has no variable)
- Polynomial: an expression made up of terms joined by addition or subtraction

Name	Number of terms	Example
Monomial	1	$6 x^{2}$
Binomial	2	$3 a^{2}-5$
Trinomial	3	$-w^{2}-5 w+1$
Polynomial	more than 3	$2 s^{2}-t^{2}+s t+7 t-4$

- Degree of a term: sum of exponents of all variables in a term

Ex: $3 x \rightarrow$

$$
-5 x^{2} y \rightarrow
$$

$$
8 \rightarrow
$$

- Degree of a polynomial: the same degree as its highest-degree term

$$
\text { Ex: } x^{2}+5 x-7 \rightarrow \quad 5 a b^{2}+6 a^{2} b^{3}+7 a b-8 b^{4} \rightarrow
$$

Ex.1: For each expression, complete the following chart

Expression	\# of Terms	Name	\# of Variables	Degree	Coefficient of First Term	Constant Term
$5 y-3$						
$6 a b^{2}-5 b^{2}-8 c^{3}$						
$-t^{2}+5 b^{3}$						
$5 x y^{2} z^{3}$						
$4 x^{2}-5 y+7 z^{2}-8 x y z+12$						
-4						

Ex.2: Give an example of a polynomial that satisfies all statements below:

- consists of three terms
- contains two variables
- has degree 2
- one term is of degree 1 with a coefficient of 7
- one term is a constant

Algebra Tiles

You can use models, such as algebraic tiles and diagrams, to represent some polynomials.
For example: $2 x^{2}-4 x+3$

Ex.3: Write the expression represented by each set of algebra tiles.
a)

b)

c)

d)

