Exploring quadratic functions (7.1)

Follow the instructions laid out in this worksheet and post your answers in a blog post. Your post must include at least	st 2
photos from desmos. Due: Monday Sep 25.	

Title: Exploring quadratic functions

Categorize: Math 11

- 1. What is a quadratic function? Give an example.
- 2. Go to desmos.com and type in the following function: $y = ax^2 + bx + c$
 - a. Desmos will give you the option of adding "sliders" for a, b, c or all. Click all. This will allow you to change the values of a, b, c to see how the graph changes.
 - b. Start with slider values $a=1,\ b=0,\ c=0.$ Describe any symmetry you notice.
- 3. Keep b and c constant (ie. Don't change their value). Describe what happens to the graph when:
 - a. a < 0
 - i. Does the graph have a maximum point or a minimum point?
 - b. a > 0
 - i. Does the graph have a maximum point or minimum point?
 - c. -1 < a < 1
 - d. a > 1 or a < -1

Note: Be specific in your description.

- 4. We call the max or min point (x, y) of a quadratic function the **vertex**. Make two statements that describes the relationship between the sign of a (positive and negative) and whether the vertex is a maximum or minimum.
- 5. Keep α and c constant. Describe how the graph changes as b changes.
- 6. Keep a and b constant. Describe how the graph changes as c changes.

Part 2:

<u>Roots</u> are the solutions to the quadratic equation. The roots are found by looking at where the curve crosses the x axis (x-intercepts).

See if by adjusting the sliders, you can get a curve that just touches the x axis (y=0).

Equation:
This quadratic equation has ONE solution.
Adjust the sliders so you can get the roots of 1 and -1?
Equation:
This quadratic equation has TWO solutions.
Adjust the sliders so that the curve does NOT cross the x-axis
Equation:

When the curve does NOT cross the x-axis, there are NO REAL solutions for this equation.