2.1 Comparing and Ordering Rational Numbers

Prescribed Learning Outcomes (PLO'S):

- Compare and order rational numbers.
- Identify a rational number between two given rational numbers.

Warm Up: Convert each number to a decimal using your calculator and circle all the terms which describe each decimal.

Number	Decimal Equivalent	Description	
$\frac{28}{11}$		Terminating	Repeating
11		Non-Terminating	Non-Repeating
$\frac{28}{8}$		Terminating	Repeating
8		Non-Terminating	Non-Repeating
$\sqrt{2}$		Terminating	Repeating
		Non-Terminating	Non-Repeating

Integers are whole numbers and their ______{{..., -3, -2, -1, 0, 1, 2, 3 ...}}.

A Rational Number is a decimal that either ______ or _____. The root of the

word rational is ______ so rational numbers can be expressed as ratios or ______ $\frac{a}{b}$, where

a and *b* are **integers** and $b \neq 0$.

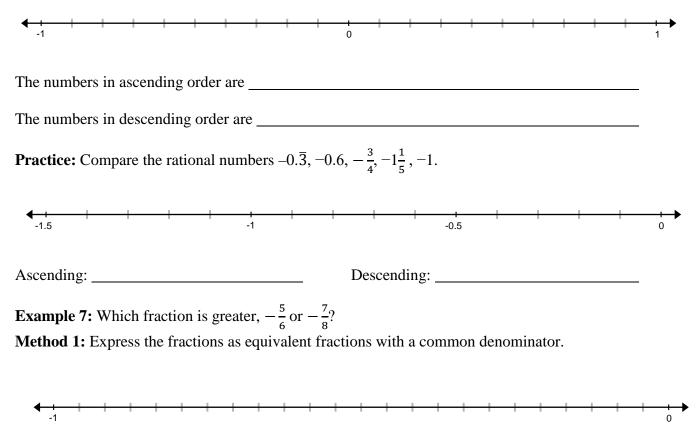
Example 1: Write the opposite of each rational number.

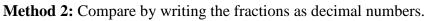
a) 9	b) $-\frac{23}{3}$	c) –17.6	d) $\frac{-1}{-2}$
e) $-\frac{-3}{4}$	f) $-\frac{2}{-3}$	g) $-\frac{-1}{-5}$	h) $-\frac{-3}{-10}$

Example 2: Show that each number is rational by expressing it as both a decimal and a fraction.

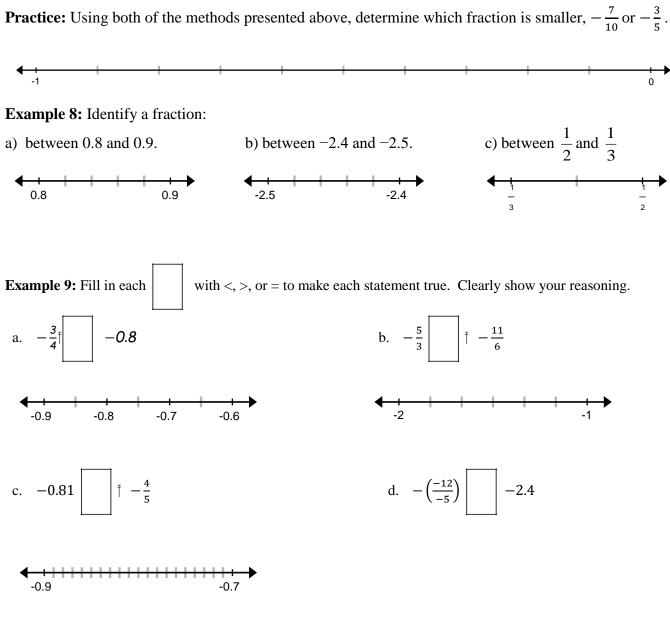
Number	Decimal Form	Fraction Form
-5		
$4\frac{3}{5}$		
7.8		
$\sqrt{49}$		
1		
2		
1		
4		
1		
8		
3		
4		

Example 3: Circle the rational numbers.

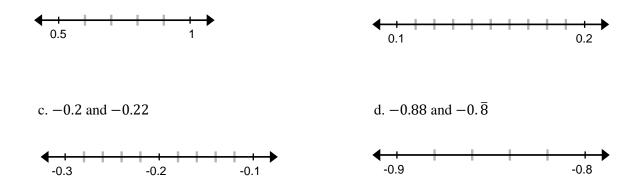

17
$$\frac{5}{0}$$
 -3.606 $\sqrt{3}$ -8 $\frac{3}{4}$ π $\sqrt{0.25}$

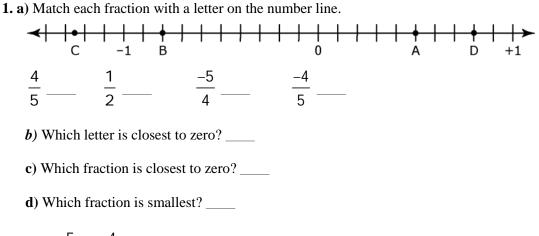

Example 4 : Is zero a rational number? Explain using the definition of a rational number.

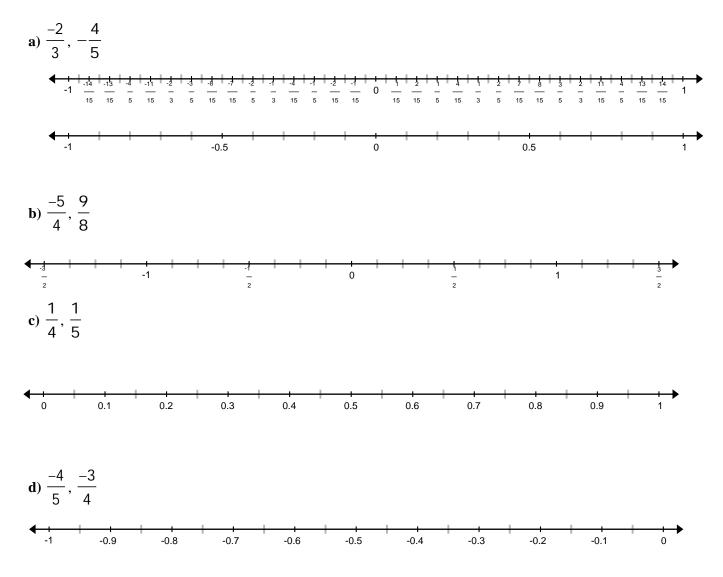
Example 5: Is 1.2345678910111213141516171819202122232425....a rational number? Explain using the definition of a rational number in decimal form.


Example 6: Compare and order the rational numbers.
$$-\frac{3}{4}$$
, 0.7, -0.8, $\frac{1}{2}$, -0.8

Strategy: Express all the numbers in decimal form and place them on a number line.






Example 10: Which number in each pair is greater? Explain each answer. a. 0.9 and 0.99 b. $0.\overline{1}$ and 0.11

Review Questions

- e) Is $\frac{-5}{4}$ or $\frac{-4}{5}$ closer to 0? Which fraction is smaller? Explain.
- 2. Which fraction in each pair is closer to zero? Which fraction is smaller? Verify by graphing each pair of fractions on the number line.

