Math 9 - Unit 1 Rationals Practice Test

Instructions: Show all your work in the space provided. All answers should be in lowest terms. NO CALCULATORS.

Vocabulary you should know:
Rational number:
Numerator:
Denominator:
Mixed fraction:
\qquad
\qquad
\qquad

Improper fraction: \qquad
Lowest terms (reduce): \qquad
Reciprocal:
Common denominator: \qquad
Perfect square: \qquad
Square root:

1. Simplify.
a) $(-14)+26=$
b) $41+(-36)=$ \qquad c) $32-57=$
d) $(-18)-14=$ \qquad e) $(-30)-(-24)=$
f) $(-7)(4)=$
g) $(-6)(-3)=$ \qquad h) $(5)(-6) \div(-2)=$ \qquad i) $(-36) \div(-4)=$ \qquad
2. Simplify. Show all your steps. Be sure that each line of work is equivalent to the original question.
a) $2(7-9)-3(5+17)=$ \qquad b) $[3-10 \div(-2)]-6(-3)=$ \qquad
3. Arrange in ascending order (from least to greatest): 3, $-9,0,2 / 3,-11 / 4,-6 /-5,-12 / 2$
\qquad
\qquad
\qquad
4. Determine two rational numbers between each pair:
$1 / 2$ and $1 / 4$
5. Identify the rational numbers marked with a * on the number line.

6. Express the rational numbers as a decimal.

$$
-18 / 4=
$$

6. Express the decimal as a fraction in lowest terms. $0.12=$ \qquad
7. Calculate. All answers should be in lowest terms.
a) $\frac{-1}{2}+\frac{3}{8}=$
b) $-3 \frac{1}{4}-\frac{9}{5}=$
c) $\frac{3}{-5} \times\left(-\frac{10}{9}\right)=$
d) $\frac{-14}{15} \div 1 \frac{1}{9}=$
8. Calculate. Show all steps.
a) $\left(\frac{-5}{2}\right)+\frac{3}{5} \times \frac{-2}{3}=$
b) $10-\left(\frac{-3}{4}\right) \div \frac{5}{8}-\left(\frac{-1}{2}\right)=$
c) $\sqrt{\frac{16}{25}}+\frac{-1}{2} \cdot 3 \frac{3}{4}-1.2$
9. Fill in the blanks to make a true statement related to rational numbers.
a) The number on the top of the fraction is called the \qquad .
b) A negative number is found on the \qquad of zero on the numberline.
c) If $\mathrm{x}<0, \mathrm{y}<0$ and $\mathrm{z}<0$, the expression ($\mathrm{xy}-\mathrm{z}$) would be \qquad .
d) When dividing rational, one method of finding the answer is to \qquad
e) A \qquad is needed when subtracting fractions.
f) Write two equivalent forms for the fraction $\frac{-12}{20}$ are \qquad and \qquad
g) Determining the square root of a number is similar to finding \qquad of a square.
