1. Is each sequence geometric? If it is, state the common ratio and a formula to determine the general term in the form $t_{n}=t_{1} r^{n-1}$.
a) $11,33,99,297, \ldots$
b) $6,12,18,24, \ldots$
2. Write the first four terms of each geometric sequence.
a) $t_{1}=-8, r=\frac{1}{2}$
b) $t_{n}=3(0.6)^{n-1}$
3. Determine the number of terms in each geometric sequence.
a) $4,12,36, \cdots, 78732$
b) $t_{1}=5, r=-\frac{1}{2}, t_{n}=\frac{5}{64}$
4. Determine the nth term of each geometric sequence.
а) $6,-18,54,-164, \ldots$
b) $t_{1}=7, t_{5}=1792$
5. Determine the unknown terms in each geometric sequence.
а) $18, \square, \square, 6174$
b) $\square, 4, \square, \square, 108$
6. Determine the first term, the common ratio, and an expression for the general term of each geometric sequence.
a) $t_{5}=900, t_{7}=0.09$
b) $t_{3}=-1728, t_{6}=373248$
7. The following sequences are geometric. What is the value of each variable?
a) $8 x-12,16,64,256, \ldots$
b) $25,5,1,2 y-1, \ldots$
8. An excavating company has a digger that was purchased for $\$ 240000$. It is depreciating at 12% per year.
a) Determine the next three terms of this geometric sequence.
b) Determine the general term. Define your variables.
c) How much will the digger be worth in 7 years?
d) How long will it take before the equipment is worth less than $\$ 120000$?
9. For each geometric series, state the values of t_{1} and r. Then, determine each partial sum.
a) $0.43+0.0043+0.000043+\ldots,\left(S_{6}\right)$
b) $5-5+5-\ldots,\left(S_{10}\right)$
10.Determine the partial sum, S_{n}, for each geometric series described.
a) $t_{1}=-4, r=2, n=10$
b) $t_{n}=(-5)(0.5)^{n-1}, n=5$
11.Determine the partial sum, S_{n}, for each geometric series.
a) $2+6+18+\cdots+354294$
b) $t_{1}=-3, r=-2, t_{n}=6144$
10. Determine the first term for each geometric series.
a) $S_{n}=3932.4, t_{n}=4915.2, r=-4$
b) $S_{n}=292968, n=8, r=5$
11. Determine the number of terms in each geometric series.
a) $4+20+100+\cdots+t_{n}=15624$
b) $1792-896+448-\cdots-t_{n}=1197$
14.The fourth term of a geometric series is 30 ; the ninth term is 960 . Determine the sum of the first nine terms.
12. The first term of a geometric series is 3 . The sum of the first two terms of the series is 15 and the sum of the first three terms of the series is 63 . Determine the common ratio.
13. A ball is dropped from the top of a $25-\mathrm{m}$ ladder. In each bounce, the ball reaches a vertical height that is $\frac{3}{5}$ the previous height. Determine the total vertical distance travelled by the ball when it contacts the ground for the sixth time. Express your answer to the nearest tenth of a metre.

Pre-Calculus 11

Geometric Sequences \& Series Practice

Key

1. a) geometric, $\left.r=3, t_{n}=11(3)^{n-1} \mathbf{b}\right)$ not geometric
2. a) $-8,-4,-2,-1$ b) $3,1.8,1.08,0.648$
3. a) 10 b) 7
4. a) $t_{n}=6(-3)^{n-1}$ b) $t_{n}=7(4)^{n-1}$
$\begin{array}{lll}\text { 5. a) } 126,882 & \text { b) } \frac{4}{3}, 12,36\end{array}$
5. a) $t_{1}=9 \times 10^{10}, r= \pm 0.01$,
$t_{n}=\left(9 \times 10^{10}\right)(\pm 0.01)^{n-1}$
b) $t_{1}=-48, r=-6, t_{n}=(-48)(-6)^{n-1}$
6. a) $x=2$ b) $y=\frac{6}{10}$ or $\frac{3}{5}$
7. a) $\$ 211200, \$ 185856, \$ 163553$
b) $t_{n}=240000(0.88)^{n-1}, t_{n}=$ value of digger,
in dollars, $n-1=$ years since purchase
c) $\$ 98082$ d) 6 years
8. a) $t_{1}=0.43, r=0.01, S_{6}=\frac{43}{99}$
b) $t_{1}=5, r=-1, S_{10}=0$
$\begin{array}{ll}\text { 10. a) }-4092 & \text { b) } \frac{-155}{16}\end{array}$
$\begin{array}{lll}\text { 11. a) } 531440 & \text { b) } 4095\end{array}$
9. a) 1.2 b) 3
10. a) 6 b) 9
11. $1916.25 \quad 15.4$
12. 94.2 m
