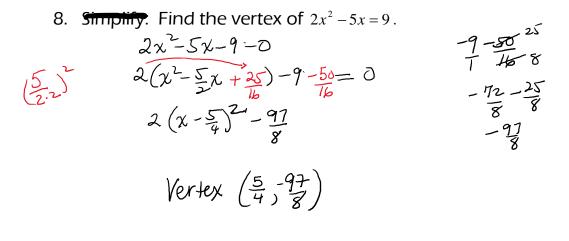
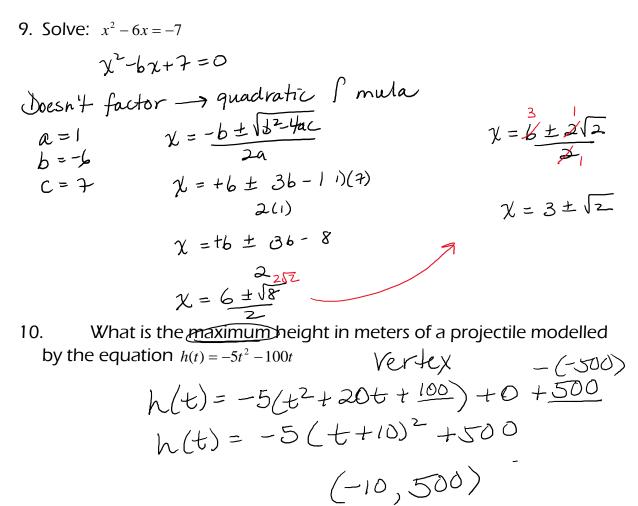

1. In a geometric sequence,
$$t_1 = 10$$
 and $t_2 = -25$, what is $t_{8?}$?
 $t_n = \alpha r^{n-1}$
 $t_8 = 10 \left(-\frac{5}{2}\right)^{8-1}$
 $r = t_n - \frac{-25}{10} = -\frac{5}{2}$
 $t_8 = 10 \left(-\frac{5}{2}\right)^7$
 t_{8-1}
 $t_8 = 10 \left(-\frac{5}{2}\right)^7$
 $t_8 = -6103.515625$

3. Solve
$$\sqrt{2x+7} - x = -4$$
. What are the restrictions on x?
 $(2x+7)^{2} = (x-4)^{2}$
 $(2x+7)^{2} = (x-4)^{2}$
 $(2x+7)^{2} = (x-4)^{2}$
 $2x = x^{2} - 8x + 16$
 $x^{3} - 7/2$
 $0 = x^{2} - 10x + 9$
 $0 = (x - 9)(x - 1)$
 $Check : X = 9 and X = 1$


4. Solve:
$$3x^2 - 11x - 4 = 0$$

 $(3x + 1)(x - 4) = 0$ or quadratic formula
 $3x + 1 = 0$ $\chi = 4$
 $3\chi = -1$
 $\chi = -\frac{1}{3}$


Riverside Math

5. Define
$$|x|$$
 the absolute value of x . Visually
is means the distance between a number and
2ero. It is also $\sqrt{x^2}$. This means you will
always end up with (output) a positive number
 $So |x| = x$ if $x \ge 0$
 $|x| = -x$ if $x \ge 0$

6. Determine
$$s_{\infty}$$
 for $\frac{3}{2} - \frac{1}{2} + \frac{1}{6}$...
Note: when $|r| \leq |$, there is a sum of the infinite
geometric series
 $r = \frac{1}{2} \div \frac{3}{2} = -\frac{2}{6} = \frac{3}{3}$
 $\frac{1}{6} \div -\frac{1}{2} = -\frac{2}{6} = \frac{3}{3}$
 $= \frac{3}{2} \div (\frac{1}{3}) = \frac{3}{2} \div (\frac{4}{3})$
 $= \frac{9}{8}$
7. Rationalize and reduce: $\frac{2\sqrt{8} - \sqrt{5}}{6} \cdot \frac{1 - \sqrt{3}}{6}$ Conjugate!

7. Rationalize and reduce:
$$\frac{2\sqrt{8}-\sqrt{5}}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}$$
 Conjugate:
 $2\sqrt{8}-2\sqrt{5}+\sqrt{15}$
 $1-\sqrt{9}$
 $4\sqrt{2}-4\sqrt{6}-\sqrt{5}+\sqrt{15}$
 -2
 $-\frac{4\sqrt{2}+4\sqrt{6}+\sqrt{5}-\sqrt{15}}{2}$

maximum height is 500 m

Answers can be found in your One Note Notebook.