FOM - Flashback \#3

1. Determine the measure of each interior angle of a regular 12 sided polygon.

$$
\begin{aligned}
& S(n)=180(n-2) \\
& S(n)=180(12-2) \\
& S(12)=1800^{\circ}
\end{aligned} \quad \ln t \angle=\frac{S(n)}{n}=\frac{1800}{12}=150^{\circ}
$$

2. Determine the unknown side length.

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& b^{2}=(17.3)^{2}+(14)^{2}-2(17.3)(14) \cos 69^{\circ} \\
& b^{2}=(321.6965) \\
& b \doteq 17.94 \mathrm{~cm}
\end{aligned}
$$

3. Determine the standard deviation for the following set of data.

$$
\begin{array}{ccc}
12 \\
18 & 10 & 19 \\
31 & 14 & 22 \\
16 & 30 & 26 \\
\bar{x}=\frac{71+66+96}{12} & 29 & \frac{239}{12} \\
\hline 19.92
\end{array}
$$

4. If $\bar{x}=23.4$ and $\sigma=4.9$, what is the z score for someone who scored 28 ? What percent of the data were below this score?
$z=\frac{x-\bar{x}}{5}=\frac{28-23.4}{4.9} \div 0.939$

$$
\sim 82.6 \%
$$

5. Determine which points are in the solution region and explain how you know.

$$
\begin{aligned}
& x \geq 8 \\
& 3 y+x<8
\end{aligned}
$$

$$
\frac{3}{3} y<-\frac{x}{3}+\frac{8}{3}
$$

(-10 15)

The points in the solution
foundations 11 area (green): $(8,-2)$ can be included because $x \geqslant 8$ is a solid line Riverside math $^{\text {b }}$ Also $8 \geqslant 8 \checkmark$ and $3(-10)+9<8$
6. Show examples of how a "happy" quadratic equation could have no solutions, one solution or two solutions. Give an actual quadratic function that would go along with each situation..

No solutions

Example: $y=(x-3)^{2}+1$

$y=(x-3)^{2}$

Two Solution

$$
y=(x+1)^{2}-3
$$

7. If Mike is travelling $65 \mathrm{~km} / \mathrm{hr}$ and Janet was traveling at $24 \mathrm{~m} / \mathrm{s}$, who is travelling slower? Show clearly how you know.
Mike: $65 \frac{\mathrm{Km}}{\mathrm{hr}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{kmt}} \cdot \frac{1 \mathrm{hr}}{60 \mathrm{mmt}} \cdot \frac{1 \mathrm{mik}}{60 \mathrm{sec}}=\frac{65000 \mathrm{~m}}{3600}=18 \mathrm{~m} / \mathrm{sec}$

Mike is traveling slower
8. Solve the equation $3 x^{2}+5 x=9$, give both exact and approximate solutions.

$$
\begin{array}{ll}
\begin{array}{l}
a=3 \\
b=5 \\
c=-9
\end{array} & x=\frac{-b \pm \sqrt{x^{2}-4 a c}}{2 a} \\
x & =\frac{-5 \pm \sqrt{25-4(3)(-9)}}{2(3)} \\
& x=\frac{-5 \pm \sqrt{25+108}}{6} \quad \text { Approx } \\
& \text { Exact } \quad x=\frac{-5 \pm \sqrt{133}}{6} \quad 1.09 \text { and }-2.76
\end{array}
$$

