Last week I learned how to find a vertex, the x intercepts, y intercetps, the domain and range, the axis of symmetry, minimum or the maximum and if the parabola opens up or down. By using the formula y=a(x-p)^{2 }

With this formula I am able to find the vertex with the p+q values. The “a” tells me if the parabola compresses or stretches and the (x-p)2 tells me the horizontal translation. The formula at the top is in standard form which is the easiest to use.^{ }

And with the standard form formula you can also use algebra to solve a missing variable so that your equation will be inm that form. In the example below I will show you how to find all of the characteristics of the following equations.

Here is my example and the equation is positive so my parabola will be opening up and if my equation was negative then it will be opening down. The a also tells me if the parabola opens up or down so the formula is easy to understand and use to find all of the characteristics. I also used desmos to see the y int which was 13. Desmos has been very helpful to me because then I can see how the parabola looks like and know the x and y intercepts. The standard form also tells me all of the information and their is enough to graph a lot of points. Remember when you are graphing a parabola make sure to have a lot of points because its a curve and not a straight line and if you are stuck make a table of values and it will make it easier to graph. That is what I learned in class last week and can’t wait to learn more about parabolas.