Factoring Polynomial Expressions Lesson #3: Factoring Trinomials of the Form $x^2 + bx + c - Part_T wo$

Review of Factoring By Inspection

In order to factor $x^2 + bx + c$ by inspection, we need to find two integers which have a product equal to c and a sum equal to b. If no two such integers exist, then the polynomial

In order to factor $x^2 + 6x + 9$, we need to find two numbers whose product is $\frac{9}{2}$ and whose sum is $\frac{6}{2}$. $\frac{1}{2}$ ($\frac{1}{2}$) or $\frac{1}{2}$

In order to factor $x^2 + x - 12$, we need to find two numbers whose product is -12 and whose sum is $(\chi-3)(\chi+4)$

Recall the following points from the previous lesson.

- If the product is **positive**, then the two integers must be either both positive or both negative.
- If the product is **negative**, then one integer is **positive** and the other is **negative**.

Factor the following trinomials by inspection.

a)
$$x^2 - x - 12$$
 and $x^2 - x - 12$

b)
$$x^2 + 3x - 18$$

c)
$$a^2 - 7a - 8$$

a)
$$x^2 - x - 12$$
 odd -1 b) $x^2 + 3x - 18$ c) $a^2 - 7a - 8$ $(x+3)(x-4)$ $(x+6)(x-3)$ $(a-8)(a+1)$

$$(x+6)(x-3)$$

Factor where possible.

a)
$$=a^2 - 6a + 27$$
 GCF = -1
b) $2t^2 - 14t + 20$ GCF = 2
 $-(a^2 + 6a - 27)$ $2(t^2 - 7t + 10)$
 $-(a+9)(a-3)$ $2(t-5)(t-2)$

b)
$$2t^2 - 14t + 20$$
 GCF = 2

c)
$$x^2 - 3x - 6$$

Will not factor

d)
$$4x^4 - 16x^3 - 20x^2$$
 GCF = $4x^2$
 $4x^2(x^2 - 4x - 5)$
 $4x^2(x+1)(x-5)$

Complete Assignment Questions #1 - #5

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.

Factoring Trinomials of the form $x^2 + bxy + cy^2$

Complete the following statements:

(x+2)(x+4) can be expanded to $x^2 + 6x + 8$, so $x^2 + 6x + 8$ can be factored to (2+2)(2+4). $= 2^2 + 6xy + 8y^2$ i) (x+2)(x+4) can be expanded to $x^2 + 6x + 8$,

(x+2y)(x+4y)

ii) (x+2y)(x+4y) can be expanded to $x^2 + 6xy + 8y^2$, so $\frac{\chi^2 + 6\chi y + 8y^2}{}$ can be factored to $(\chi + 2y)(\chi + 4y)$.

Factor. mult. 30

a) $x^2 + 13xy + 30y^2$ and 13b) $x^2 + 71xy - 72y^2$ c) $3a^2 - 15ab - 252b^2$ (2+3y) (2+72y) (2x-y) $3(a^2 - 5ab - 84b^2)$ 3(a+7b)(a-12b)

Complete Assignment Questions #6 - #11

Assignment

1. Complete the table to find two numbers with the given sum and the given product.

	Sum	Product	Integers
a)	8	-20	
b)	-8	-20	
c)	-1	-20	

	Sum	Product	Integers
d)	3	-70	
e)	-11	28	
f)	0	-16	

2. Factor the following trinomials.

a)
$$x^2 - 2x - 15$$

b)
$$r^2 - 2r - 24$$

a)
$$x^2 - 2x - 15$$
 b) $x^2 - 2x - 24$ **c)** $x^2 + 2x - 24$

d)
$$x^2 + 2x - 3$$

e)
$$x^2 + x - 30$$

d)
$$x^2 + 2x - 3$$
 e) $x^2 + x - 30$ **f)** $x^2 - 3x - 10$

Copyright @ by Absolute Value Publications. This book is NOT covered by the Cancopy agreement.