St Thomas Aquinas High School (Mr. N. Cune & revised by Mrs. Wong)

Name: _____ Block:____

3.3 Order of Operations

BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, Subtraction)

In the expression 5×3^4 , 5 represent the <u>Coefficient</u>, 3 represents the <u>base</u> and 4 represents the <u>Coefficient</u>

1. Evaluate each expression. Show your work.

a)
$$5(3)^3 = 5(27) = 135$$

c)
$$4(-2^4) = 4(-16) = -64$$

b)
$$6(-5)^2 = 6(25) = 150$$

d)
$$-7(4^3) = -7(64) = -448$$

2. Write each expression, using a coefficient and a power. Then, find the value of each expression. Show your work.

a)
$$4 \times 3 \times 3 \times 3 = 4(3^3)$$

= $4(27)$
= 108

e)
$$3(-y)(-y)(-y)$$

= $3(-y)^{4}$
= $3y^{4}$

$$g)^{-(4^{3})\times 2(4^{5})} = -2(4^{8})$$

$$= -2(65 536)$$

$$= -131 072$$

$$\frac{-15(-2)^{4}}{5(-2)^{4}} = -3(-2)^{6} \\
= -3 \times 1 \\
= -3$$

$$(8)^{2 \times 3^{1} \times 4 \times 3^{5}}$$
 $(8 \times 3)^{6}$ $(8 \times 72)^{6}$ $(8 \times 72)^{6}$ $(8 \times 72)^{6}$ $(8 \times 72)^{6}$

3. Evaluate using your calculator.

b)
$$5 \times (-2) \times (-2) \times (-2) \times (-2) \times (-2) = 5(-2)^5$$

= $5(-32)$
= -160

d)
$$6(-10)(-10)(-10)(-10)(-10)$$

= $6(-10)^{5}$
= -600000

$$h)^{2(-3)^{4} \times -5(-3)^{4}}$$
= -10 (-3)⁵
= -10 (-243)
= 2430

$$j)^{20(-4)^5 \div (10(-4)^5)} = \frac{20(-4)^5}{10(-4)^5} \\
 = 2(-4)^6 \\
 = 2$$

i)
$$\frac{70(-2)^6}{10(-2)^3} = 7(-2)^3$$

= 7(-8)
= -56

$$a) - 6(4)^6$$
 $b) 7 \times 8^3$ $c) - 4(-9)^3$ $d) - 7^4$ $= -6 (4)^6$ $= 7 \times 512$ $= -4(-729)$ $= -1 \times 2401$ $= -24 \times 576$ $= 3584$ $= 2916$ $= -2401$

4. Evaluate. Show your work.

i) 3(24) _ /. \

a)
$$(6+3)^2-21 = 9^2-21$$

= $81-21$
= 60
b) $6^2-5^2 = 36-25$
= 11

c)
$$12 + (-4)^2 - (-3^3)$$
 = $12 + 16 - -27$ d) $5^3 - 4(-2^6)$ = $125 - 4(-64)$ = $28 + 27$ = $125 + 256$ = 381
e) $(-2)^0 - (-3)^0$ $\frac{0^5}{5^0} = \frac{0}{1} = 0$ g) $-\left(\frac{3}{4}\right)^0 = -1$ = $1 - 1$ = 0

5. Find the value of each expression. Show your work.

a)
$$[(9-(-2)]_{-}^{2}+(-3)^{3}]$$
 $= [11]_{-}^{2}+-27]$
 $= 121-27$
 $= 121-27$
 $= 12-3(16)$
 $= 12-3(16)$
 $= 12-48$
 $= 12-3(16)$
 $= 12-48$
 $= -36$

c) $36-5^{2}+(4^{3}-6^{2})$
 $= 36-25+(64-36)$
 $= 11+28$
 $= 39$

e) $3^{2}\times2^{3}=9\times8$
 $= 72$
 $= (-9)+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$
 $= 9+81$

Exponents Page 2

i) 4(3²)

$$j) 4(3^{2})$$
= $4(9)$
= 36

$$k) 10^3 + 10^3$$
 (000 + 1000
= 2000

$$\begin{array}{ccc} 1) & (10+10)^3 \\ \text{(20)} & = 8 & \infty \end{array}$$

$$m)(5 \times 3)^2 = 15^2$$

= 225

$$n) 5^{2} \times 3^{2}$$

$$= 25 \times 9$$

$$= 25$$

o)
$$\frac{(-3)(-3)^5}{(-3)^3} = (-3)^{1+5} - 3$$

= $(-3)^3$
= -27

p)
$$(-2)^{3}(4)^{0}(-2)^{5}(4)$$

= $(-2)^{3+5}(4)^{0+1}$
= $(-2)^{8}(4)^{1}$
= $(-2)^{8}(4)^{1}$
= $(-2)^{8}(4)^{1}$
= $(-2)^{8}(4)^{1}$

$$\frac{q)\frac{(-5)^{4}(7^{7})}{(-5)^{3}(7^{6})} = (-5)^{4-3}(7)^{7-6}$$

$$= (-5)^{1}(7)^{1}$$

$$= (-5)^{1}(7)^{1}$$

$$= -35$$

$$r) (-6)^{2} \times 6 + (-6)^{5} \div (-6)^{2}$$

$$= 216 + (-6)^{3}$$

$$= 216 + -216$$

$$\frac{r}{36 \times 6} + (-6)^{5} \div (-6)^{2}$$

$$36 \times 6 + (-6)^{5-2}$$

$$= 216 + (-6)^{3}$$

$$= 216 + -216$$

$$= 0$$

s)
$$\frac{(-2)^{5} + (-2)^{2}}{(-2^{2})}$$
 Use Redmas
No shortcut $= 12^{9} \div (12^{5} \times 12) \div 12^{3}$ $= 12^{9} \div 12^{5} \div 12^{3}$ $= 12^{9} \div 12^{3}$ $= 12^{9} \div 12^{3}$ $= 12^{9} \div 12^{3}$ $= 12^{9} \div 12^{3}$ $= 12^{3} \div 12^{3}$ $= 12^{3} \div 12^{3}$

t)
$$12^{9} \div (12^{5} \times 12^{5}) \div 12^{3}$$

= $12^{9} \div 12^{6} \div 12^{3}$
= $12^{9-6} \div 12^{3}$
= $12^{3} \div 12^{3}$
= 12^{3-3}
= $12^{6} = 1$

= 7