St Thomas Aquinas High School (Mr. N. Cune \& revised by Mrs. Wong)

Name:
Block:

3.3 Order of Operations

Wan Up :

BEDMAS (Brackets, Exponents, Division, Multiplication, Addition, Subtraction)
In the expression $5 \times 3^{4}, 5$ represent the Coefficient, 3 represents the base and 4 represents the exponent

1. Evaluate each expression. Show your work.
a) $5(3)^{3}=5(27)=135$
b) $6(-5)^{2}=6(25)=150$
c) $4\left(-2^{4}\right)=4(-16)=-64$
d) $-7\left(4^{3}\right)=-7(64)=-448$
2. Write each expression, using a coefficient and a power. Then, find the value of each expression. Show your work.
a) $4 \times 3 \times 3 \times 3=4\left(3^{3}\right)$
b) $5 \times(-2) \times(-2) \times(-2) \times(-2) \times(-2)=5(-2)^{5}$
$=4(27)$
$=S(-32)$
$=108$

$$
=-160
$$

c) $-1 \times 10 \times 10$

$$
\begin{aligned}
& \text { d) } 6(-10)(-10)(-10)(-10)(-10) \\
&= 6(-10)^{5} \\
&=-600000
\end{aligned}
$$

$$
\begin{aligned}
& =-1(10)^{8} \\
& =-100000000
\end{aligned}
$$

e) $3(-y)(-y)(-y)(-y)$

$$
\begin{aligned}
& =3(-y)^{4} \\
& =3 y^{4}
\end{aligned}
$$

f) $2(-b)(-b)(-b)$

$$
\begin{aligned}
& =2(-b)^{3} \\
& =-2 b^{3}
\end{aligned}
$$

g) $-\left(4^{3}\right) \times 2\left(4^{5}\right)$

$$
\begin{aligned}
& =-2\left(4^{8}\right) \\
& =-2(65536) \\
& =-131072
\end{aligned}
$$

$$
\text { h) } 2(-3)^{4} \times-5(-3)^{1}
$$

$$
=-10(-3)^{5}
$$

$$
=-10(-243)
$$

$$
=2430
$$

$$
\text { i) } \frac{-15(-2)^{4}}{5(-2)^{4}}=-3(-2)^{0}
$$

$$
\begin{aligned}
& =-5 \times 1 \\
& =-3
\end{aligned}
$$

$$
\text { j) } 20(-4)^{5} \div\left(10(-4)^{5}\right)=\frac{20(-4)^{5}}{10(-4)^{5}}
$$

$$
=2(-4)^{\circ}
$$

$$
=2
$$

k) ${ }^{2 \times 3^{1} \times 4 \times 3^{5}} \quad 8 \times 3^{6}$

$$
=8 \times 729
$$

$$
=5832
$$

1) $\frac{70(-2)^{6}}{10(-2)^{3}}=7(-2)^{3}$

$$
=7(-8)
$$

$$
=-56
$$

3. Evaluate using your calculator.
4. Evaluate using your calculator.
a) $-6(4)^{6}$
b) 7×8^{3}
c) $-4(-9)^{3}$
d) -7^{4}
$=-6(4096)$
$=7 \times 512$
$=-4(-729)$

$$
=-1 \times 2401
$$

$$
=-24576=3584 \quad=2916 \quad=-2401
$$

4. Evaluate. Show your work.
a) $(6+3)^{2}-21=9^{2}-21$
b) $6^{2}-5^{2}=36-25$
$=81-21$
$=11$
$=60$
c) $12+(-4)^{2}-\left(-3^{3}\right.$

$$
\begin{aligned}
& =12+16--27 \\
& =28+27
\end{aligned}
$$

$$
\text { d) } 5^{3}-4\left(-2^{6}\right)=125-4(-64)
$$

$$
=125+256
$$

$$
=381
$$

e) $(-2)^{0}-(-3)^{0}$
f) $\frac{0^{5}}{5^{0}}=\frac{0}{l}=0$
g) $-\left(\frac{3}{4}\right)^{0}=-1$

$$
\begin{aligned}
& =1-1 \\
& =0
\end{aligned}
$$

5. Find the value of each expression. Show your work.
a) $\left[(9-(-2)]^{2}+(-3)^{3}\right.$
b) $12-3\left(4^{2}\right)$
$=[11]^{2}+-27$
$=12-3(16)$
$=121-27$
$=12-48$
$=94$
$=-36$

$$
\begin{aligned}
& \text { c) } 36-5^{2}+\left(4^{3}-6^{2}\right) \\
& =36-25+(64-36) \\
& =11+28 \\
& =39
\end{aligned}
$$

$$
\text { d) }-\left(-3^{2}\right)+(-9)^{2}
$$

$$
=-(-9)+81
$$

$$
=9+81
$$

$$
=90
$$

e) $3^{2} \times 2^{3}=9 \times 8$

$$
\text { f) }\left(2^{2} \times 2^{3}\right)^{4}
$$

$$
=72
$$

$$
\begin{aligned}
& =\left(2^{2+3}\right)^{4} \\
& =\left(2^{5}\right)^{4} \\
& =2^{5 \times 4}
\end{aligned} \quad \begin{aligned}
& =2^{20} \\
& =1048576
\end{aligned}
$$

$$
\text { g) } \frac{2^{3} \times 2^{1}}{\left(3^{2}\right)^{5}}=\frac{2^{4}}{3^{10}}
$$

h) $\left(4^{2}\right)^{3} \times\left(4^{3}\right)^{4} \div 4^{16}$

$$
=\frac{16}{59049}
$$

$$
=4^{2 \times 3} \cdot 4^{3 \times 4} \div 4^{16}
$$

$$
=4^{6} \cdot 4^{12} \div 4^{16}
$$

$$
=4^{6+12} \div 4^{16}
$$

$$
=4^{18} \div 4^{16}
$$

$$
=4^{2}=16
$$

i) $2\left(7^{4}\right)-1.1$

$$
\text { i) } \Delta(22)
$$

i) $3\left(2^{4}\right)$

$$
\begin{aligned}
& =3(16) \\
& =48
\end{aligned}
$$

k) $10^{3}+10^{3}$

$$
\begin{aligned}
& 1000+1000 \\
= & 2000
\end{aligned}
$$

m) $(5 \times 3)^{2}$

$$
\begin{aligned}
& =15^{2} \\
& =225
\end{aligned}
$$

o) $\frac{(-3)(-3)^{5}}{(-3)^{3}}=(-3)^{1+5-3}$

$$
=(-3)^{3}
$$

$$
\begin{aligned}
& \text { j) } 4\left(3^{2}\right) \\
& =4(9) \\
& =36
\end{aligned}
$$

$$
\begin{aligned}
&1)(10+10)^{3} \\
&(20)=8000
\end{aligned}
$$

$$
\begin{aligned}
& \text { n) } 5^{2} \times 3^{2} \\
& =25 \times 9 \\
& =225
\end{aligned}
$$

$$
=-27
$$

$$
\text { 9) } \begin{aligned}
\frac{(-5)^{4}\left(7^{7}\right)}{(-5)^{3}\left(7^{0}\right)} & =(-5)^{4-3}(7)^{7-6} \\
& =(-5)^{1}(7)^{\prime} \\
& =-35
\end{aligned}
$$

$$
\begin{aligned}
& \text { p) }(-2)^{3}(4)^{0}(-2)^{5}(4) \\
&=(-2)^{3+5}(4)^{0+1} \\
&=(-2)^{8}(4)^{1} \\
&= 256 \times 4 \\
&=1024
\end{aligned}
$$

r)

$$
\text { r) } \begin{aligned}
&(-6)^{2} \times 6+(-6)^{5} \div(-6)^{2} \\
& 36 \times 6+(-6)^{5}-2 \\
&= 216+(-6)^{3} \\
&=216+-216 \\
&=0
\end{aligned}
$$

s) $\frac{(-2)^{5}+(-2)^{2}}{\left(-2^{2}\right)}$
use Bedmas
No shortcut

$$
\text { t) } \begin{aligned}
& 12^{9} \div\left(12^{5} \times 12^{1} \div 12^{3}\right. \\
= & 12^{9} \div 12^{6} \div 12^{3} \\
= & 12^{9-6} \div 12^{3} \\
= & 12^{3} \div 12^{3} \\
= & 12^{3-3} \\
= & 12^{0}=1
\end{aligned}
$$

