\qquad Block \qquad

3.2 Exponent Laws

Warm Up: In the expression $3^{4}, 3$ represents the and 4 represents the \qquad 1. Write each expression as a single power. Then, evaluate.
a) $2^{4} \times 2^{4}$
Repeated Multiplication
Single Power
b) $(-4)^{2} \times(-4)^{2}$
$(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2 \times 2)$

$$
r-r+r
$$

c) $6^{2} \times 6 \quad(6 \times 6) \times 6$
d) $9^{3} \times 9^{3} \quad(9 \times 9 \times 9)(9 \times 9 \times 9)$
e) $b \times b^{3} \quad b \times(b \times b \times b)$
$\frac{2^{8}}{\frac{(-4)^{4}}{6^{3}}} \frac{9^{6}}{b^{4}}$
2. Write each expression as a product of two powers, then as a single power.

Product of Powers	Single Power
$3^{4} \times 3^{2}$	3^{6}
$5^{4} \times 5^{6}$	5^{10}
$8^{6} \times 8^{5}$	8^{11}
$11^{3} \times 11^{2}$	11^{5}
$x^{2} \cdot x^{4}$	x^{6}

3. Write each expression as a single power. Then, evaluate.
a) $3^{4} \div 3^{2}$ Quotient $3^{2} \quad 9$
b) $(-5)^{3} \times(-5)^{2}$ Product
$(-5)^{5}$
-3125
c) $\left[(-2)^{2}\right]^{3}$ Power
$(-2)^{6}$ 64
d) $8^{2} \div 8^{2}$ Quotient

$$
1
$$

\square
e) $(-y)^{4}(-y)^{3}$ Prodxt
(-a) $(-b)^{2}$ Prod

$$
\frac{8^{0}}{(-y)^{7}}
$$

$$
-y^{7}
$$

$$
(-b)^{6}
$$

f) $(-b)^{4}(-b)^{2}$ Product b^{6}
4. Does $-8^{2}=(-8)^{2}$? Justify your answer. -8^{2} means $-1 \times 8 \times 8 \quad-1$ is the coefficient

$$
8 \text { is the base }
$$

$$
\text { means }(-8)(-8)
$$

$$
-8 \text { is the base }
$$

5. Arrange the powers in order from smallest value to largest value.

$$
\begin{array}{rrrr}
(-4)^{2},(2)^{3},-(4)^{3},(-1)^{5} & 2^{3} & (-4)^{2} \\
-(-1)^{3} & (-1)^{2} & 2^{2} & 16
\end{array}
$$

5. Write each expression as a quotient def two powers, then as a single power.

6. Write each expression as a a quotient df two powers, then as a single power.

Quotient of Powers \quad Single Power
a) $(5 \times 5 \times 5 \times 8) \div(5 \times 5)$
$5^{4} \div 5^{2}$ 5^{2}

Evaluate
$7^{3} \div 7^{3}$
7°
$8^{7} \div 8^{4}$
8^{3}
25
b) $\ell \times-\subset=\varnothing \times \varnothing \times 7$

512
c) $\frac{8 \times 8 \times 8 \times 8 \times 8 \times 8 \times 8}{8 \times 8 \times 8 \times 8}$
$2^{6} \div 2^{5}$
2^{1}
2
d) $\frac{(2 \times 2 \times 2 \times 2 \times 2 \times 2)}{(2 \times 2 \times 2 \times 2 \times 2)}$
$b^{4} \div b^{3}$
b^{\prime}
b
7. Write each expression as a single power with a coefficient, then evaluate
a) $3 \times(-2)(-2)(-2)(-2)$

$3 \times 16=48$
b) $2(5)^{4} \times(5)^{3}$
c) $4(-1)^{4} \times 3(-1)$
d) $(15 \cdot(22) \div(5 \times 2)$

$\frac{3(-2)^{4}}{2(5)^{7}}$	$3 \times 16=48$
$\frac{12(-1)^{12}}{}$	$2 \times 78125=156250$
$3\left(2^{9}\right)$	$3 \times 12=12$

Single Power with Coefficient Evaluate
6. Complete the table.

Expression	Repeated Multiplication	Powers
a) $[3 \times(-4)]^{2}$	$[-12 x-12]$ or $3 \times 3 \times-4 \times-4$	$(-12)^{2}$ or $3^{2} \times(-4)^{2}$
b) $(4 \times 6)^{2}$	$(24)(24)$ or $4 \times 4 \times 6 \times 6$	24^{2} or $4^{2} \times 6^{2}$
c) $\left(\frac{2}{3}\right)^{5}$	$\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)\left(\frac{2}{3}\right)$	$\frac{2^{5}}{3^{5}}$ or $\left(\frac{2}{3}\right)^{5}$
d) $(x \cdot y)^{3}$	$x \cdot x \cdot x \cdot y \cdot y \cdot y$	$x^{3} y^{3}$

Multiple Choice Questions
7. In the equation $(-2)^{5}=-32$, which number represents the base of the power?
A-32
(B-2)
C-1
D 2
8. Which expression is equivalent to $(-2) \times(-2) \times(-2) \times(-2) \times(-2)$? $\begin{array}{lll}\text { A } 2^{5} & B 32 \quad C(-2)^{5} \quad D-(-2)^{5}\end{array}$

