# Week 13 Blog Post

This week is math, we learned how to graph absolute values, meaning the graph cannot cross the X axis to become negative. How this works, is the point it normally crosses to the negative side, reflects going the opposite direction using the same pattern, let’s say we were using 3x+2, when it reaches the point where it’s supposed to cross it goes up 3 then to the other way 2. If we were going up 3 over 2 to the right the reflected side would be up 3 over 2 to the left. We also learned how to do this with parabolas but instead of one line, it will be the vertex that will be reflected, the same rules also apply, the X intercept is like an invisible wall which will not let the line/ parabola cross to become a negative.

In the first picture, this graph represents the graph of x2+3x-5 and |x2+3x-5|. The green line represents the parabola if it were to be just graphed, no absolute values; we can see that it crosses the X intercept making it negative. In the orange lines, we can see the vertex is reflected, because the invisible wall reflected it back to a positive, having the same vertex but positive.

In the second picture, the orange line represents the normal value where it goes into negative 3x+2, and the blue line represents the absolute value version, where it’s reflected, which the equation is|3x+2|. This represents the absolute value, where it reflects right before it crosses the X intercept using the same pattern as the normal version but going up 3 to the left 2…