Category Archives: Grade 10
Math 10 – week 18 – elimination
This week in math 10 we learned how to solve equations with using elimination. Elimination in incredibly similar to using insertion.
The first step to solving something using elimination is to add or subtract. in this case I will use subtract.
7x+y=15
3x+y=3
I’m going to make all of the number in the second equation negative
7x+y=15
-3x-y=-3
Now to subtract. Note: when using elimination, make zero pares with x or y
4x=12
Now to divide by 4
X=3
We can then insert x back into the equation to find out y
7(3)+y=15
21+y=15
X=-6
my core competencies reflection:
Math 10 – week 15 – graphing
This week in math 10, we learned how to tell what a graph will look like by looking at a linear equation. The equation is: y=mx+b
m = slope
b = y intercept
lets take a look at this picture and find the equation.
Remember the equation for slope is y/x or rise/run. So, after finding to nice points, the slope is 7/1, witch can be simplified to just 7. The y-intercept for this line -8, so the equation for this line is: Y=7x – 8.
Know, lets to the opposite, take an equation and make a graph from it: Y=1/3x + 4.
My recommendation would be to start form the y-intercept and then add the slope
Y=1/4x + 2
Math 10 – week 17 – substation
This week in math 10 I learned how to solve equations with using substitution. The steps for substitute are as fallows:
- Pick an equation to rearrange
- Substitute equation
- Solve equation
- Substitute the number just found, back into the rearranged equation
- Verify solution on both equations
The equations being solved for this example will be y-x=1 and 2x+3y=18.
The first step is to pick an equation to rearrange and rearrange it. The best option is always the equation with a coefficient of 1. So, the best option for rearranging is y-x=1.
y-x=1
y-x+x=1+x
y=1+x
The second step is to insert the rearranged equation and substitute into the second equation. We are going to put y=1+x into 2x+3y=18. We are going to want to put 1+x into the equation where the y is in the second equation because y is equal to 1+x.
y=1+x and 2x+3y=18 becomes 2x+3(1+x)=18
If you notice, the equation has become a simple 9th grade equation.
The next step is to solve the equation
2x+3(1+x)=18
2x+3+3x=18
5x+3=18
5x+3-3=18-3
5x=15
5x/5=15/5
x=3
Now to take the number we found (3) and insert it back into the rearranged equation (y=1+x).
y=1+4
y=4
Now to verify the numbers in both equation
y-x=1
4-3=1
2x+3y=18
2(3)+3(4)=18
6+12=18
Math 10 – Week 16 – converting equations
This week in math 10, we learned about the different form of equations and how to change between them.
Here are the different equations:
Slope intercept form
y=mx+b
Slope Point form
y-y2=m(x-x2)
General form
0=mx+y+b
Slope intercept form to Slope Point form (y=mx+b to y-y2=m(x-x2))
We want to take the equation y=4x+8 and convert it to slope point form. This is one of the most simple conversion.
The first step is to fin a point to convert: (0,8) being put into the slope changes to (1,12)
Next, you would just inster the number into the equation: y-12=4(x-1)
Slope intercept form to General form (y=mx+b to 0=mx+y+b)
This conversion is also very simple. All you need to do to subtract y:
y=4x+8
-y
0=4x-y+8
Slope Point form to General form (y-y2=m(x-x2) to 0=mx+y+b)
This conversion is a little more complicated. The first step is to convert form slope point form to slope intercept form:
We need to find the y-intercept, you can do that by applying the slope to the point in the equation: y-12=4(x-1) turn into y=4x+8.
You then can apply the conversion for Slope intercept form to General form.
math 10 – week 14 – slope
This week in math 10 we learned different ways to calculate slope. Slope is presented in the form of rise over run () or y over x ( ).
The first way is counting. We will be solving the slope of this picture
The first step is to find the some reasonable integer coordinates that the line passes over.
The next step is to count the rise and the run
The rise of the slope is 4 and the run of the slope is 2. The fraction would be 4/2.
The second way is to use math. I will show a step by step lesson in how to solve the slope of: (2,10) and (6,17)
Before the math, this is the equation to use to solve for slope:
Slope=y1-y2/x1-x1
The first thing to do is a basic recommendation. Highlight the y factors in each equation. We are used to dealing with x first.
(2,10) (6,17)
Second plug the coordinate into the equation.
10-17/2-6
Lastly solve
7-/4
Sometimes the fraction can be simplified but that is not the case here.
Math 10 – week 13 – analysis
This week in math team we learned how to dissect graphs and connect it to a story. Here the graphs that we will be dissecting.
George and his family watched a movie together and the graph show the relationship between the amount of popcorn and time.
We can dissect George’s graph first. It starts on the y axis so we can assume he has a full bole of popcorn at the start of the movie. The line on the graph goes down really fast and ends up the x axis really early so we can deduce that he ate all of his pop corn really fast.
Know lets dissect George’s sister’s graph. Her graph starts at the same place as before, so she had a full bole of popcorn at that start of the movie. her graph is really curvy, so we can assume that she was eating the popcorn slowly at times and fast too.
Geroge’s dad’s graph is next. There is a strate line in the graph so he did not eat any popcorn for a while.
Gorege’s mom did not get her pop corn right at the star of the movie, I know this because it dose not start at the y-axis. There is a long strate line and we can
mind map relection
For my assignment, I decided to do the mind map and I decided to use bubbles. I like how easy bubbles is to use. I don’t like the automatic colour options. I had to dig into what the character and understand why she did the things that she did. I don’t think I would use this website again because I have a perfectly good program already on my laptop. I think I would redo this assignment in the future when we understand the characters more. I used growth mindset when I was wiling to use the different website.
Math 10 – week 12 – function notation
This week in math we learned how to write function notation. There are 3 different types, equation, mapping, and function notation.
1: equation
5x+4
You can input any number in this equation and there will be no overlapping outputs. This is the t-chart for the equation that can then be charted on a plane
x | y |
-3 | -11 |
-2 | -6 |
-1 | -1 |
0 | 4 |
1 | 9 |
2 | 14 |
3 | 19 |
2: mapping
This is the same equation but in map notation: f:(x)→5x+4
The f at the start is the name of the function (eg: g,h,k). the arrow means happed onto. So if I where to use function f to solve if x=3, it would look like this:
f:(3)→5(3)+4
f:(3)→15+4
f:(3)→19
3: function
This is what the same equation would look like in function notation: f(x)=5x+4
The function still has a name(f) and the equal sign(=) is mapped onto.
This is what it looks like to solve if x=3:
f(3)=5(3)+4
f(3)=15+4
f(3)=19
Math 10 – week 11 – domain and Range
Domain and Range
This week in math 10, I learned how to identify a coordinate plain’s Domain and Range.
The horizontal line, also known as the x-axis, is used to find the domain, and the vertical line, also known as the y-axis, is used to find the range.
To understand how to find Domain and Range, I will simplify it to only one line. Know to explain the next few examples.
Example #1
To describe this line, you list out the places where the dots are: {2,3,4,5}. You can not answer the question like this: {2-5} because that would imply decimals.
Example #2
The that arrow means that all numbers smaller than -6 are possible solutions for the equation and the unshaded circle means that -6 is not a possible solution. The answer would be written like this: {-6˃x}
Example #3
The fact that there are 2 circles means that all the possible solutions have to bee in between those 2 numbers. The shaded circle means that that the number circled is a possible answer. The answer would be written like this: {-1≤x˂7}
Know to introduce Range in.
Example #4
Starting with the Domain. The answer would be any real number because there is no base point and the arrows go both ways. For the range, the answer would be 8 because the height dose not vary.
D {xR}
R {8}